Skip to main content
Log in

The reflectivity of relativistic ultra-thin electron layers

  • Topical issue: Fundamental Physics and Ultra-High Laser Fields
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The coherent reflectivity of a dense, relativistic, ultra-thin electron layer is derived analytically for an obliquely incident probe beam. Results are obtained by two-fold Lorentz transformation. For the analytical treatment, a plane uniform electron layer is considered. All electrons move with uniform velocity under an angle to the normal direction of the plane; such electron motion corresponds to laser acceleration by direct action of the laser fields, as it is described in a companion paper [Eur. Phys. J. D 55, 433 (2009)]. Electron density is chosen high enough to ensure that many electrons reside in a volume λR 3, where λR is the wavelength of the reflected light in the rest frame of the layer. Under these conditions, the probe light is back-scattered coherently and is directed close to the layer normal rather than the direction of electron velocity. An important consequence is that the Doppler shift is governed by γx=(1-(Vx/c)2)-1/2 derived from the electron velocity component Vx in normal direction rather than the full γ-factor of the layer electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Einstein, Ann. Phys. (Leipzig) 17, 891 (1905)

    ADS  Google Scholar 

  2. S.V. Bulanov, T. Esirkepov, T. Tajima, Phys. Rev. Lett. 91, 085001 (2003)

    Article  ADS  Google Scholar 

  3. A.S. Pirozhkov et al., Phys. Plasmas 14, 123106 (2007)

    Article  ADS  Google Scholar 

  4. R. Lichters, J. Meyer-ter-Vehn, A. Pukhov, Phys. Plasmas 3, 3425 (1996)

    Article  ADS  Google Scholar 

  5. S. Gordienko et al., Phys. Rev. Lett. 93, 115002 (2004)

  6. T. Baeva, S. Gordienko, A. Pukhov, Phys. Rev. E 74, 046404 (2006)

    Article  ADS  Google Scholar 

  7. B. Dromey et al., Phys. Rev. Lett. 99, 085001 (2007)

    Article  ADS  Google Scholar 

  8. V.A. Vshivnov, N.M. Naumova, F. Pegoraro, S.V. Bulanov, Phys. Plasmas 5, 2727 (1998)

    Article  ADS  Google Scholar 

  9. A.S. Pirozhkov et al., Phys. Plasmas 13, 013107 (2006)

    Article  ADS  Google Scholar 

  10. J. Meyer-ter-Vehn, H.-C. Wu, Eur. Phys. J. D 55, 433 (2009)

    Article  Google Scholar 

  11. V.V. Kulagin, V.A. Cherepenin, M.S. Hur, H. Suk, Phys. Rev. Lett. 99, 124801 (2007)

    Article  ADS  Google Scholar 

  12. E. Esarey, S.K. Ride, P. Sprangle, Phys. Rev. E 48, 3003 (1993)

    Article  ADS  Google Scholar 

  13. H. Schwoerer et al., Phys. Rev. Lett. 96, 014802 (2006)

    Article  ADS  Google Scholar 

  14. A. Bourdier, Phys. Fluids 26, 1804 (1983)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, HC., Meyer-ter-Vehn, J. The reflectivity of relativistic ultra-thin electron layers. Eur. Phys. J. D 55, 443–449 (2009). https://doi.org/10.1140/epjd/e2009-00082-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2009-00082-0

PACS

Navigation