Skip to main content
Log in

Coherent Thomson backscattering from laser-driven relativistic ultra-thin electron layers

  • Topical issue: Fundamental Physics and Ultra-High Laser Fields
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The generation of laser-driven dense relativistic electron layers from ultra-thin foils and their use for coherent Thomson backscattering is discussed, applying analytic theory and one-dimensional particle-in-cell simulation. The blow-out regime is explored in which all foil electrons are separated from ions by direct laser action. The electrons follow the light wave close to its leading front. Single electron solutions are applied to initial acceleration, phase switching, and second-stage boosting. Coherently reflected light shows Doppler-shifted spectra, chirped over several octaves. The Doppler shift is found ∝ γx 2=1/(1-βx 2), where βx is the electron velocity component in normal direction of the electron layer which is also the direction of the driving laser pulse. Due to transverse electron momentum py, the Doppler shift by 4γx 2=4γ2/(1+(py/mc)2)≈2γ is significantly smaller than full shift of 4γ2. Methods to turn py→0 and to recover the full Doppler shift are proposed and verified by 1D-PIC simulation. These methods open new ways to design intense single attosecond pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Alterelli, A. Salam, Europhys. News 2, 35 (2004)

    Google Scholar 

  2. W. Ackermann et al., Nature Photonics 1, 336 (2007)

    Article  ADS  Google Scholar 

  3. J. Seres, E. Seres, A.J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, F. Krausz, Nature 433, 596 (2005)

    Article  ADS  Google Scholar 

  4. A. Einstein, Ann. Phys. (Leipzig) 17, 891 (1905)

    ADS  Google Scholar 

  5. E. Esarey, S.K. Ride, P. Sprangle, Phys. Rev. E 48, 3003 (1993)

    Article  ADS  Google Scholar 

  6. H. Schwoerer et al., Phys. Rev. Lett. 96, 014802 (2006)

    Article  ADS  Google Scholar 

  7. S. Bulanov, T. Esirkepov, T. Tajima, Phys. Rev. Lett. 91, 085001 (2003)

    Article  ADS  Google Scholar 

  8. A.S. Pirozhkov et al., Phys. Plasmas 14, 123106 (2007)

    Article  ADS  Google Scholar 

  9. R. Lichters, J. Meyer-ter-Vehn, A. Pukhov, Phys. Plasmas 3, 3425 (1996)

    Article  ADS  Google Scholar 

  10. S. Gordienko et al., Phys. Rev. Lett. 93, 115002 (2004)

    Article  ADS  Google Scholar 

  11. G. Tsakiris, K. Eidmann, J. Meyer-ter-Vehn, F. Krausz, New J. Phys. 8, 19 (2006)

    Article  ADS  Google Scholar 

  12. B. Dromey et al., Phys. Rev. Lett. 99, 085001 (2007)

    Article  ADS  Google Scholar 

  13. T. Baeva, S. Gordienko, A. Pukhov, Phys. Rev. E 74, 046404 (2006)

    Article  ADS  Google Scholar 

  14. V.A. Vshivkov, N.M. Naumova, F. Pegoraro, S.V. Bulanov, Phys. Plasmas 5, 2727 (1998)

    Article  ADS  Google Scholar 

  15. A.S. Pirozhkov et al., Phys. Plasmas 13, 013107 (2006)

    Article  ADS  Google Scholar 

  16. Y.M. Mikhailova, V.T. Platonenko, S.G. Rykovanov, JETP Lett. 81, 571 (2005)

    Article  ADS  Google Scholar 

  17. Y. Tian, W. Yu, P. Lu, H. Xu, V. Senecha, A. Lei, B. Shen, X. Wan, Phys. Plasmas 15, 053105 (2008)

    Article  ADS  Google Scholar 

  18. S.G. Rykovanov, J. Schreiber, J. Meyer-ter-Vehn, New J. Phys. 10, 113005 (2008)

    Article  ADS  Google Scholar 

  19. V.V. Kulagin, V.A. Cherepenin, M.S. Hur, H. Suk, Phys. Rev. Lett. 99, 124801 (2007)

    Article  ADS  Google Scholar 

  20. A.K. Geim, K.S. Novoselov, Nature Materials 6, 183 (2007)

    Article  ADS  Google Scholar 

  21. P.M. Woodward, J. Inst. Electr. Eng. 93, 1554 (1947); J.D. Lawson, IEEE Trans. Nucl. Sci. 26, 4217 (1979)

    Google Scholar 

  22. E. Esarey, P. Sprangle, J. Krall, Phys. Rev. E 52, 5443 (1995)

    Article  ADS  Google Scholar 

  23. H.-C. Wu, J. Meyer-ter-Vehn, Eur. Phys. J. D 55, 443 (2009)

    Article  Google Scholar 

  24. V.V. Kulagin, V.A. Cherepenin, M.S. Hur, H. Suk, Phys. Plasmas 14, 113101 (2007)

    Article  ADS  Google Scholar 

  25. M.Wen, H.-C.Wu, J. Meyer-ter-Vehn, B. Shen, Eur. Phys. J. D 55, 451 (2009)

    Article  Google Scholar 

  26. J. Meyer-ter-Vehn, A. Pukhov, Z.-M. Sheng, Relativistic Laser Plasma Interaction, in Atoms, Solids and Plasmas in Super-Intense Laser Fields, edited by D. Batani et al. (Kluwer Academic/Plenum Publishers, 2001)

  27. A. Pukhov et al., Eur. Phys. J. D 55, 407 (2009)

    Article  Google Scholar 

  28. R. Shah et al., Opt. Lett., submitted

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer-ter-Vehn, J., Wu, HC. Coherent Thomson backscattering from laser-driven relativistic ultra-thin electron layers. Eur. Phys. J. D 55, 433–441 (2009). https://doi.org/10.1140/epjd/e2009-00081-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2009-00081-1

PACS

Navigation