Skip to main content
Log in

Modified effective-range theory for low energy \({\sf e}\)-N2 scattering

  • Atomic and Molecular Collisions
  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We analyze the low-energy e-N2 collisions within the framework of the modified-effective range theory (MERT) for the long-range potentials, developed by O’Malley et al. [J. Math. Phys. 2, 491 (1961)]. In comparison to the traditional MERT we do not expand the total cross-section in the series of the incident momentum ħk, but instead we apply the exact analytical solutions of the Schrödinger equation for the long-range polarization potential, as proposed in the original formulation of O’Malley et al. This extends the applicability of MERT up to few eV regime, as we confirm using some simplified model potential of the electron-molecule interaction. The parameters of the effective-range expansion (i.e. the scattering length and the effective range) are determined from experimental, integral elastic cross-sections in the 0.1–1.0 eV energy range by fitting procedure. Surprisingly, our treatment predicts a shape resonance that appears slightly higher than experimentally well known resonance in the total cross-section. Agreement with the experimentally observed shape-resonance can be improved by assuming the position of the resonance in a given partial wave. Influence of the quadrupole potential on resonances is also discussed: we show that it can be disregarded for N2. In conclusion, the modified-effective range formalism treating the long-range part of the potential in an exact way, reproduces well both the very low-energy behavior of the integral cross-section as well as the presence of resonances in the few eV range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atomic and molecular processes: an R-matrix approach, edited by P.G. Burke, K.A. Berrington (IOP, Bristol, 1993)

  • J. Tennyson, J.D. Gorfinkiel, I. Rozum, C.S. Trevisan, N. Vinci, Radiat. Phys. Chem. 68, 65 (2003)

    Google Scholar 

  • E. Czuchaj, J.E. Sienkiewicz, W. Miklaszewski, Chem. Phys. 116, 69 (1987)

    Google Scholar 

  • A.P.P. Natalense, M.H.F. Bettega, L.G. Ferreira, M.A.P Lima, Phys. Rev. A 52, R1 (1995)

  • W.A. Isaacs, C.W. McCurdy, T.N. Rescigno, Phys. Rev. A 58, 309 (1998)

    Google Scholar 

  • F.A. Gianturco, J.A. Rodriguez-Ruiz, Phys. Rev. A 47, 1075 (1993)

    Google Scholar 

  • F.A. Gianturco, R.R. Lucchese, N. Sanna, J. Chem. Phys. 104, 6482 (1996)

    Google Scholar 

  • F.A. Gianturco, D. De Fazio, J.A. Rodriguez-Ruiz, K.T. Tang, J.P. Toennies, Z. Phys. D 33, 27 (1995)

    Google Scholar 

  • F.A. Gianturco, P. Paioletti, J.A. Rodriguez-Ruiz, Z. Phys. D 36, 51 (1996)

    Google Scholar 

  • Z. Idziaszek, G. Karwasz, Phys. Rev. A 73, 064701 (2006)

    Google Scholar 

  • T.F. O’Malley, L. Spruch, L. Rosenberg, J. Math. Phys. 2, 491 (1961)

    Google Scholar 

  • Z. Idziaszek, G.P. Karwasz, R.S. Brusa, J. Phys. Conf. Ser. 115, 012002 (2008)

    Google Scholar 

  • W. Sun, M.A. Morrison, M.A. Isaacs, W.K. Trail, D.T. Alle, R.J. Gulley, M.J. Brennan, S.J. Buckman, Phys. Rev. A 52, 1229 (1995)

    Google Scholar 

  • Cz. Szmytkowski, K. Maciąg, G. Karwasz, Phys. Scr. 54, 271 (1996)

  • S. Telega, F.A. Gianturco, Eur. Phys. J. D 38, 495 (2006)

    Google Scholar 

  • G.P. Karwasz, A. Zecca, R.S. Brusa, Electron Scattering with Molecules, in Landolt-Börstein New Series, Photon and Electron Interaction, with Atoms, Molecules and Ions (Springer-Verlag, Berlin, Heidelberg, 2003), Vol. I/17, pp. 6.1–6.51

  • M.A. Morrison, W. Sun, W.A. Isaacs, W.K. Trail, Phys. Rev. A 55, 2786 (1997)

    Google Scholar 

  • H.P. Saha, Phys. Rev. A 39, 5048 (1989)

    Google Scholar 

  • G.N. Haddad, T.F. O’Malley, Austr. J. Phys. 35, 35 (1982)

    Google Scholar 

  • T. Sasakawa, J. Horáĉek, J. Phys. B 15, L169 (1982)

  • F.A. Gianturco, K. Willner, Phys. Rev. A 75, 062714 (2007)

    Google Scholar 

  • I.I. Fabrikant, H. Hotop, M. Allan, Phys. Rev. A 71, 22712 (2005)

    Google Scholar 

  • I.I. Fabrikant, J. Phys. B: At. Mol. Phys. 16, 1269 (1983)

    Google Scholar 

  • W. Vanroose, C.W. McCurdy, T.N. Rescigno, Phys. Rev. A 68, 052713 (2003)

    Google Scholar 

  • J. Ferch, B. Granitza, W. Raith, J. Phys. B 18, L445 (1985)

  • A. Mann, F. Linder, J. Phys. B 25, 533 (1992)

    Google Scholar 

  • G.P. Karwasz, A. Karbowski, Z. Idziaszek, R.S. Brusa, Nucl. Instrum. Meth. B 266, 471 (2008)

    Google Scholar 

  • P.A. Macri, R.O. Barrachina, Phys. Rev. A 65, 062718 (2002)

    Google Scholar 

  • P.A. Macri, R.O. Barrachina, Nucl. Instrum. Meth. B 205, 543 (2003)

    Google Scholar 

  • S.J. Buckman, J. Mitroy, J. Phys. B 22, 1365 (1989)

    Google Scholar 

  • H.R. Sadeghpour, J.L. Bohn, M.J. Cavagnero, B.D. Esry, I.I. Fabrikant, J.H. Macek, A.R.P. Rau, J. Phys. B 33 R93 (2000)

  • S. Watanabe, Ch.H. Greene, Phys. Rev. A 22, 158 (1980)

    Google Scholar 

  • I.I. Fabrikant, Opt. Spektrosk. 53, 223 (1982)

    Google Scholar 

  • F.A. Gianturco, P. Paioletti, Phys. Rev. A 55, 3491 (1997)

    Google Scholar 

  • E. Vogt, G.H. Wannier, Phys. Rev. 95, 1190 (1954)

    Google Scholar 

  • R.M. Spector, J. Math. Phys. 5, 1185 (1964)

    Google Scholar 

  • A. Erdélyi, Higher transcendental functions (McGraw-Hill, New York, 1955), Vol. III

  • M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972)

  • T.N. Olney, N.M. Cann, G. Cooper, C.E. Brion, Chem. Phys. 223, 59 (1997)

    Google Scholar 

  • M. Allan, J. Phys. B: At. Mol. Phys. 35, L387 (2002)

  • I.I. Fabrikant, J. Phys. B: At. Mol. Phys. 17, 4223 (1984)

    Google Scholar 

  • N.F. Mott, H.S.W. Massey, Theory of Atomic Collisions, 3rd edition (Clarendon Press, Oxford, 1965)

  • D.P. Dewangan, H.R.J. Walters, J. Phys. B: At. Mol. Phys. 10, 637 (1977)

    Google Scholar 

  • G.P. Karwasz, D. Pliszka, A. Zecca, R.S. Brusa, Nucl. Instrum. Meth. B 250, 666 (2005); G.P. Karwasz, R.S. Brusa, D. Pliszka, Nucl. Instrum. Meth. B 251, 520 (2006)

  • G. Ramanan, G.R. Freeman, J. Chem. Phys. 93, 3120 (1990)

    Google Scholar 

  • T.N. Rescigno, D.A. Byrum, W.A. Isaacs, C.W. McCurdy, Phys. Rev. A 60, 2186 (1999)

    Google Scholar 

  • S. Mazevet, M.A. Morrison, L.A. Morgan, R.B. Nesbet, Phys. Rev. A 64, 040701 (2001)

    Google Scholar 

  • T.N. Rescigno, W.A. Isaacs, A.E. Orel, H.-D. Meyer, C.W. McCurdy, Phys. Rev. A 65, 032716 (2002)

    Google Scholar 

  • J. Meixner, F.W. Schafke, Mathieusche Funktionen und Spharoid Funktionen (Springer, Berlin, 1954)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Idziaszek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Idziaszek, Z., Karwasz, G. Modified effective-range theory for low energy \({\sf e}\)-N2 scattering. Eur. Phys. J. D 51, 347–355 (2009). https://doi.org/10.1140/epjd/e2009-00028-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2009-00028-6

PACS

Navigation