Skip to main content
Log in

New strong-field QED effects at extreme light infrastructure

Nonperturbative vacuum pair production

  • Topical issue: Fundamental Physics and Ultra-High Laser Fields
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Since the work of Sauter, and Heisenberg, Euler and Köckel, it has been understood that vacuum polarization effects in quantum electrodynamics (QED) predict remarkable new phenomena such as light-light scattering and pair production from vacuum. However, these fundamental effects are difficult to probe experimentally because they are very weak, and they are difficult to analyze theoretically because they are highly nonlinear and/or nonperturbative. The extreme light infrastructure (ELI) project offers the possibility of a new window into this largely unexplored world. I review these ideas, along with some new results, explaining why quantum field theorists are so interested in this rapidly developing field of laser science. I concentrate on the theoretical tools that have been developed to analyze nonperturbative vacuum pair production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The Extreme Light Infrastructure (ELI) project: http://www.extreme-light-infrastructure.eu/elihome.php

  2. W. Heisenberg, H. Euler, Z. Phys. 98, 714 (1936); english translation at e-print arXiv:physics/0605038

    Article  ADS  Google Scholar 

  3. G.V. Dunne, Ian Kogan Memorial Collection, From Fields to Strings: Circumnavigating Theoretical Physics, edited by M. Shifman et al., Vol. 1, pp. 445–522 [arXiv:hep-th/0406216]

  4. V. Weisskopf, Kong. Dans. Vid. Selsk. Math-fys. Medd. XIV No. 6 (1936); English translation in: Early Quantum Electrodynamics: A Source Book, edited by A.I. Miller (Cambridge University Press, 1994)

  5. W. Greiner, J. Reinhardt, Quantum Electrodynamics (Springer, Berlin, 1992); W. Greiner, B. Müller, J. Rafelski, Quantum Electrodynamics Of Strong Fields (Springer, Berlin, 1985)

    Google Scholar 

  6. W. Dittrich, H. Gies, Springer Tracts Mod. Phys. 166, 1 (2000)

    Article  ADS  Google Scholar 

  7. W.E. Lamb, R.C. Retherford, Phys. Rev. 79, 549 (1950)

    Article  ADS  Google Scholar 

  8. S.G. Karshenboim, Phys. Rep. 422, 1 (2005)

    Article  ADS  Google Scholar 

  9. Sh.Zh. Akhmadaliev et al., Phys. Rev. C 58, 2844 (1998)

    Article  ADS  Google Scholar 

  10. S.L. Adler, Ann. Phys. 67, 599 (1971); S.L. Adler, C. Schubert, Phys. Rev. Lett. 77, 1695 (1996)

    Article  ADS  Google Scholar 

  11. Sh. Zh. Akhmadaliev et al., Phys. Rev. Lett. 89, 061802 (2002)

    Article  ADS  Google Scholar 

  12. C. Bula et al. [E144 Collaboration], Phys. Rev. Lett. 76, 3116 (1996)

    Article  ADS  Google Scholar 

  13. H.B.G. Casimir, Indag. Math. 10, 261 (1948); H.B.G. Casimir, Kon. Ned. Akad. Wetensch. Proc. 51, 793 (1948)

    Google Scholar 

  14. R.L. Jaffe, Phys. Rev. D 72, 021301 (2005); T. Emig, R.L. Jaffe, J. Phys. A 41, 164001 (2008)

    Article  ADS  Google Scholar 

  15. M. Bordag, U. Mohideen, V.M. Mostepanenko, Phys. Rep. 353, 1 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, B.C. Odom, Phys. Rev. Lett. 97, 030802 (2006), erratum, Phys. Rev. Lett. 99, 039902 (2007); T. Kinoshita, M. Nio, Phys. Rev. D 73, 013003 (2006); T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio, Phys. Rev. D 77, 053012 (2008)

    Article  ADS  Google Scholar 

  17. D. Hanneke, S. Fogwell, G. Gabrielse, Phys. Rev. Lett. 100, 120801 (2008)

    Article  ADS  Google Scholar 

  18. F. Sauter, Z. Phys. 69, 742 (1931)

    Article  MATH  ADS  Google Scholar 

  19. J.R. Oppenheimer, Phys. Rev. 31, 66 (1928)

    Article  ADS  Google Scholar 

  20. F.V. Bunkin, I.I. Tugov, Sov. Phys. Dokl. 14, 678 (1970)

    ADS  Google Scholar 

  21. A. Ringwald, in Proceedings of Erice, Workshop On Electromagnetic Probes Of Fundamental Physics, edited by W. Marciano, S. White (World Scientific, 2003)

  22. J. Schwinger, Phys. Rev. 75, 651 (1949); J. Schwinger, Phys. Rev. 93, 615 (1954); J. Schwinger, Phys. Rev. 94, 1362 (1954)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. J. Schwinger, Phys. Rev. 82, 664 (1951)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. W. Dittrich, M. Reuter, Effective Lagrangians In Quantum Electrodynamics, Lect. Notes Phys. 220, 1 (Springer, Berlin, 1985)

    Google Scholar 

  25. H. Gies, Eur. Phys. J. D 55, 311 (2009)

    Article  Google Scholar 

  26. L.D. Landau, Z. Phys. 64, 629 (1930); L.D. Landau, E.M. Lifshitz, Quantum mechanics: non-relativistic theory (Pergamon Press, New York, 1977)

    Article  ADS  Google Scholar 

  27. A.I. Nikishov, in Issues in Intense-Field Quantum Electrodynamics, Trudy Lebedev Phys. Inst. 111, 619 (Moskva, Nauka, 1979)

    Google Scholar 

  28. V.I. Ritus, in Issues in Intense-Field Quantum Electrodynamics, Trudy Lebedev Phys. Inst. 111, 497 (Moskva, Nauka, 1979); V.I. Ritus, Sov. Phys. Dokl. 29, 227 (1984)

    Google Scholar 

  29. S.L. Lebedev, V.I. Ritus, Sov. Phys. JETP 59, 237 (1984); S.L. Lebedev, V.I. Ritus, Zh. Eksp. Teor. Fiz. 86, 408 (1984)

    Google Scholar 

  30. A. Salam, P.T. Matthews, Phys. Rev. 90, 690 (1953); A. Salam, J. Strathdee, Nucl. Phys. B 90, 203 (1975)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. L.V. Keldysh, Sov. Phys. JETP 20, 1307 (1965)

    MathSciNet  Google Scholar 

  32. A.M. Perelomov, V.S. Popov, M.V. Terent’ev, Sov. Phys. JETP 23, 924 (1966); A.M. Perelomov, V.S. Popov, M.V. Terent’ev, Sov. Phys. JETP 24, 207 (1967); A.M. Perelomov, V.S. Popov, M.V. Terent’ev, Sov. Phys. JETP 25, 336 (1967)

    ADS  Google Scholar 

  33. L.P.Kotova, A.M. Perelomov, V.S. Popov, Sov. Phys. JEP 27, 616 (1968)

    ADS  Google Scholar 

  34. A.M. Perelomov, Y.B. Zel’dovich, Quantum Mechanics: Selected Topics (World Scientific, Singapore, 1998)

    MATH  Google Scholar 

  35. F.H.M. Faisal, Theory of Multiphoton Processes (Plenum, New York, 1987)

    Google Scholar 

  36. M.V. Ammosov, N.B. Delone, V.P. Krainov, Zh. Eksp. Teor. Fiz. 91, 2008 (1986); M.V. Ammosov, N.B. Delone, V.P. Krainov, Sov. Phys. JETP 64, 1191 (1986); for a review, see: N.B. Delone, V.P. Krainov, Usp. Fiz. Nauk. 168, 531 (1998); N.B. Delone, V.P. Krainov, Phys. Usp. 41, 469 (1998)

    Google Scholar 

  37. V.S. Popov, Phys. Usp. 42, 733 (1999)

    Article  ADS  Google Scholar 

  38. H.R. Reiss, Phys. Rev. A 22, 1786 (1980); H.R. Reiss, Phys. Rev. Lett. 101, 043002 (2008), erratum, Phys. Rev. Lett. 101, 159901(E) (2008)

    Article  ADS  Google Scholar 

  39. E. Brézin, C. Itzykson, Phys. Rev. D 2, 1191 (1970)

    Article  ADS  Google Scholar 

  40. V.S. Popov, Sov. Phys. JETP 34, 709 (1972); V.S. Popov, M.S. Marinov, Sov. J. Nucl. Phys. 15, 702 (1972); V.S. Popov, M.S. Marinov, Yad. Fiz. 16, 809 (1972); V.S. Popov, M.S. Marinov, Sov. J. Nucl. Phys. 16, 449 (1973)

    ADS  Google Scholar 

  41. V.S. Popov, Sov. Phys. JETP 35, 659 (1972); M.S. Marinov, V.S. Popov, Fortsch. Phys. 25, 373 (1977)

    ADS  Google Scholar 

  42. V.L. Pokrovskii, I.M. Khalatnikov, Sov. Phys. JETP 13, 1207 (1961)

    Google Scholar 

  43. H. Kleinert, R. Ruffini, S.S. Xue, Phys. Rev. D 78, 025011 (2008)

    Article  ADS  Google Scholar 

  44. D.L. Burke et al., Phys. Rev. Lett. 79, 1626 (1997)

    Article  ADS  Google Scholar 

  45. S.P. Kim, D.N. Page, Phys. Rev. D 65, 105002 (2002); S.P. Kim, D.N. Page, Phys. Rev. D 73, 065020 (2006); S.P. Kim, D.N. Page, Phys. Rev. D 75, 045013 (2007); S.P. Kim, H.K. Lee, Y. Yoon, Phys. Rev. D 78, 105013 (2008)

    Article  ADS  Google Scholar 

  46. A.I. Nikishov, Zh. Eksp. Teor. Fiz. 57, 1210 (1969); A.I. Nikishov, Sov. Phys. JETP 30, 660 (1970); N.B. Narozhnyi, A.I. Nikishov, Yad. Fiz. 11, 1072 (1970); N.B. Narozhnyi, A.I. Nikishov, Sov. J. Nucl. Phys. 11, 596 (1970)

    Google Scholar 

  47. A.I. Nikishov, Nucl. Phys. B 21, 346 (1970); A.I. Nikishov, e-print arXiv:hep-th/0111137

    ADS  Google Scholar 

  48. G.V. Dunne, T. Hall, Phys. Rev. D 58, 105022 (1998)

    Article  ADS  Google Scholar 

  49. Y. Kluger, J.M. Eisenberg, B. Svetitsky, F. Cooper, E. Mottola, Phys. Rev. Lett. 67, 2427 (1991); Y. Kluger, J.M. Eisenberg, B. Svetitsky, F. Cooper, E. Mottola, Phys. Rev. D 45, 4659 (1992); Y. Kluger, E. Mottola, J.M. Eisenberg, Phys. Rev. D 58, 125015 (1998)

    Article  ADS  Google Scholar 

  50. S.M. Schmidt, D. Blaschke, G. Ropke, S.A. Smolyansky, A.V. Prozorkevich, V.D. Toneev, Int. J. Mod. Phys. E 7, 709 (1998); S.M. Schmidt, D. Blaschke, G. Ropke, S.A. Smolyansky, A.V. Prozorkevich, V.D. Toneev, Phys. Rev. D 59, 094005 (1999)

    Article  ADS  Google Scholar 

  51. J.C.R. Bloch, V.A. Mizerny, A.V. Prozorkevich, C.D. Roberts, S.M. Schmidt, S.A. Smolyansky, D.V. Vinnik, Phys. Rev. D 60, 116011 (1999)

    Article  ADS  Google Scholar 

  52. R. Alkofer, M.B. Hecht, C.D. Roberts, S.M. Schmidt, D.V. Vinnik, Phys. Rev. Lett. 87, 193902 (2001)

    Article  ADS  Google Scholar 

  53. F. Hebenstreit, R. Alkofer, H. Gies, Phys. Rev. D 78, 061701 (2008)

    Article  ADS  Google Scholar 

  54. F. Hebenstreit, Diploma Thesis, University of Graz, 2008

  55. C. Dumlu, On the quantum kinetic approach and the scattering approach to vacuum pair production (to appear)

  56. V.S. Popov, Sov. Phys. JETP 36, 840 (1973); V.S. Popov, V.D. Mur, B.M. Karnakov, Phys. Lett. A 250, 20 (1998)

    ADS  Google Scholar 

  57. V.G. Bagrov, D.M. Gitman, S.P. Gavrilov, S.M. Shvartsman, Izv. Vuz. Fiz. 3, 71 (1975); D.M. Gitman, S.P. Gavrilov, Izv. Vuz. Fiz. 1, 94 (1977); S.P. Gavrilov, D.M. Gitman, Phys. Rev. D 53, 7162 (1996); S.P. Gavrilov, D.M. Gitman, Phys. Rev. D 78, 045017 (2008)

    Google Scholar 

  58. G. Mahajan, T. Padmanabhan, Gen. Rel. Grav. 40, 661 (2008); G. Mahajan, T. Padmanabhan, Gen. Rel. Grav. 40, 709 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  59. V.S. Popov, JETP Lett. 74, 133 (2001); V.S. Popov, Pisma Zh. Eksp. Teor. Fiz. 74, 151 (2001)

    Article  ADS  Google Scholar 

  60. A. Di Piazza, Phys. Rev. D 70, 053013 (2004)

    Article  ADS  Google Scholar 

  61. W. Becker et al., Adv. At. Mol. Opt. Phys. 48, 35 (2002)

    Article  Google Scholar 

  62. T. Pfeifer, C. Spielmann, G. Gerber, Rep. Prog. Phys. 69, 443 (2006)

    Article  ADS  Google Scholar 

  63. S.S. Bulanov, N.B. Narozhny, V.D. Mur, V.S. Popov, Phys. Lett. A 330, 1 (2004); S.S. Bulanov, N.B. Narozhny, V.D. Mur, V.S. Popov, J. Exp. Theor. Phys. 102, 9 (2006)

    Article  MATH  ADS  Google Scholar 

  64. R. Schützhold, H. Gies, G. Dunne, Phys. Rev. Lett. 101, 130404 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  65. T.N. Tomaras, N.C. Tsamis, R.P. Woodard, Phys. Rev. D 62, 125005 (2000); T.N. Tomaras, N.C. Tsamis, R.P. Woodard, J. High Energy Phys. 111, 008 (2001)

    Article  ADS  Google Scholar 

  66. H.M. Fried, Y. Gabellini, B.H.J. McKellar, J. Avan, Phys. Rev. D 63, 125001 (2001); H.M. Fried, Y. Gabellini, B.H.J. McKellar, J. Avan, Phys. Lett. B 524, 233 (2002)

    Article  ADS  Google Scholar 

  67. R.P. Feynman, Phys. Rev. 80, 440 (1950); R.P. Feynman, Phys. Rev. 84, 108 (1951)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  68. M.J. Strassler, Nucl. Phys. B 385, 145 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  69. For an extensive review, see: C. Schubert, Phys. Rep. 355, 73 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  70. V. Fock, Phys. Z. Sow. 12, 404 (1937)

    Google Scholar 

  71. Y. Nambu, Prog. Theor. Phys. 5, 82 (1950)

    Article  MathSciNet  ADS  Google Scholar 

  72. E.W. Glover, Nucl. Phys. Proc. Suppl. 116, 3 (2003); Z. Bern, Nucl. Phys. Proc. Suppl. 117, 260 (2003)

    Article  ADS  Google Scholar 

  73. H. Gies, K. Langfeld, Nucl. Phys. B 613, 353 (2001); H. Gies, K. Langfeld, Int. J. Mod. Phys. A 17, 966 (2002); K. Langfeld, L. Moyaerts, H. Gies, Nucl. Phys. B 646, 158 (2002)

    Article  MATH  ADS  Google Scholar 

  74. H. Gies, K. Klingmuller, Phys. Rev. D 72, 065001 (2005)

    Article  ADS  Google Scholar 

  75. P. Pechukas, Phys. Rev. 181, 166 (1969)

    Article  ADS  Google Scholar 

  76. H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets (World Scientific, Singapore, 2004)

    MATH  Google Scholar 

  77. M.B. Halpern, A. Jevicki, P. Senjanovic, Phys. Rev. D 16, 2476 (1977); M.B. Halpern, W. Siegel, Phys. Rev. D 16, 2486 (1977)

    Article  ADS  Google Scholar 

  78. I.K. Affleck, O. Alvarez, N.S. Manton, Nucl. Phys. B 197, 509 (1982)

    Article  ADS  Google Scholar 

  79. G.V. Dunne, C. Schubert, Phys. Rev. D 72, 105004 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  80. G.V. Dunne, Q.H. Wang, H. Gies, C. Schubert, Phys. Rev. D 73, 065028 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  81. G.V. Dunne, Q.H. Wang, Phys. Rev. D 74, 065015 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  82. G.V. Dunne, J. Phys. A 41, 164041 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  83. R. Schützhold, C. Maia, Eur. Phys. J. D 55, 375 (2009)

    Article  Google Scholar 

  84. I.M. Gelfand, A.M. Yaglom, J. Math. Phys. 1, 48 (1960)

    Article  ADS  Google Scholar 

  85. S. Levit, U. Smilansky, Proc. Amer. Math. Soc. 65, 299 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  86. K. Kirsten, A.J. McKane, J. Phys. A 37, 4649 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  87. M.C. Gutzwiller, J. Math. Phys. 12, 343 (1971)

    Article  ADS  Google Scholar 

  88. R.G. Littlejohn, J. Math. Phys. 31, 2952 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  89. P. Cvitanović et al., Chaos: Classical and Quantum, http://chaosbook.org/; P. Muratore-Ginanneschi, Phys. Rep. 383, 299 (2003)

  90. D.D. Dietrich, G.V. Dunne, J. Phys. A: Math. Theor. 40, F825 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  91. D. Kharzeev, K. Tuchin, Nucl. Phys. A 753, 316 (2005); D. Kharzeev, E. Levin, K. Tuchin, Phys. Rev. C 75, 044903 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Dunne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunne, G. New strong-field QED effects at extreme light infrastructure. Eur. Phys. J. D 55, 327–340 (2009). https://doi.org/10.1140/epjd/e2009-00022-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2009-00022-0

PACS

Navigation