Skip to main content
Log in

Measurement of atomic hydrogen density in non-thermal H2 plasmas via threshold ionisation-molecular beam mass spectrometry

  • Molecular Physics and Chemical Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Determinations of radical density are essential to investigate the physical-chemical processes in plasmas and setup the related theoretical models. This paper presents the experimental measurement of atomic hydrogen near grounded electrode in dielectric barrier discharge medium-pressure hydrogen plasma via threshold ionisation-molecular beam mass spectrometry. After investigating the possible influences from parent molecules in excited states, background component and space-charge, evolution of atomic hydrogen density as functions of discharge parameters are investigated utilising the signal of H2 molecule beam as the reference. At fixed gas pressure of 6.0 torr and a discharge voltage of 24 kV, atomic hydrogen density increases monotonously from 1.1×1014 to 2.0×1015 cm-3 as the discharge frequency increases from 9 to 26 kHz. Similarly the rising discharge voltage also lead to enhancement of atomic hydrogen density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R. Robertson, D. Hill, H. Chatham, A. Galagher, Appl. Phys. Lett. 43, 544 (1983)

    Google Scholar 

  • H. Toyoda, H. Kojima, H. Sugai, Appl. Phys. Lett. 54, 1507 (1989)

  • P. Kae-Nune, J. Perrin, J. Guillon, J. Jolly, Plasma Sources Sci. Technol. 4, 250 (1995)

    Google Scholar 

  • V.M. Donnelly, J. Appl. Phys. 79, 9353 (1996)

    Google Scholar 

  • H. Singh, J.W. Coburn, D.B. Graves, J. Vac. Sci. Technol. A 17, 2447 (1999)

    Google Scholar 

  • H. Singh, J.W. Coburn, D.B. Graves, J. Vac. Sci. Technol. A 18, 299 (2000)

    Google Scholar 

  • J.R. Petherbridge, P.W. May, G.M. Fuge, K.N. Rosser, M.N.R. Ashfold, Diam. Rel. Mater. 11, 301 (2002)

  • D. Douai, J. Bermdt, J. Winter, Plasma Sources Sci. Technol. 11, 60 (2002)

    Google Scholar 

  • S. Agarwal, G.W.W. Quax, M.C.M. Van de Sanden, D. Maroudas, E.S. Aydil, J. Vac. Sci. Technol. A 22, 71 (2004)

  • S. Matsuda, H. Shimosato, M. Yumoto, Elect. Eng. Jpn 147, 17 (2004)

    Google Scholar 

  • R. Horn, G. Mestl, M. Thiede, F.C. Jentoft, P.M. Schmidt, M. Bewersdorf, R. Weber, R. Schloegl, Phys. Chem. Chem. Phys. 6, 4514 (2004)

    Google Scholar 

  • W.G. Wang, Y. Xu, X.F. Yang, W.C. Wang, A.M. Zhu, Rapid Commun. Mass Spectrom. 19, 1159 (2005)

    Google Scholar 

  • J. Benedikt, D.J. Eijkman, W. Vandamme, S. Agarwal, M.C.M. Van de Sanden, Chem. Phys. Lett. 402, 37 (2005)

    Google Scholar 

  • W.L. Hsu, D.M. Tung, Rev. Sci. Instrum. 63, 4138 (1992)

    Google Scholar 

  • J. Osaka, M. Senthil Kumar, H. Toyoda, T. Ishijima, H. Sugai, T. Mizutani, Appl. Phys. Lett. 90, 172114 (2007)

    Google Scholar 

  • D.R. Lide, CRC Handbook of Chemistry and Physics, 87th edn. (CRC Press Inc., 2006)

  • S.S. Lee, D.W. Minsek, D.J. Vestyck, P. Chen, Science 263, 1596 (1994)

    Google Scholar 

  • R.C. Cheshire, W.G. Graham, T. Morrow, V. Kornas, H.F. Dobele, K. Donnelly, D.P. Dowling, T.P. O'Brien, Appl. Phys. Lett. 66, 3125 (1995)

    Google Scholar 

  • R. Rejoub, B.G. Lindsay, R.F. Stebbings, Phys. Rev. A 65, 042713 (2002)

    Google Scholar 

  • W.M.M. Kessels, E.J.H. van Assche, J. Hong, D.C. Schram, M.C.M. Van de Sanden, J. Vac. Sci. Technol. A. 22, 96 (2004)

  • M.B. Shah, D.S. Elliott, H.B. Gilbody, J. Phys. B: At. Mol. Phys. 20, 3501 (1987)

    Google Scholar 

  • D. Rapp, P. Englander-Golden, J. Chem. Phys. 43, 1464 (1965)

    Google Scholar 

  • J. Jolly, J.P. Booth, J. Appl. Phys. 97, 103305 (2005)

    Google Scholar 

  • L.F. Dong, J.X. Ran, Z.G. Mao, Appl. Phys. Lett. 86, 161501 (2005)

  • J.H. Kim, Y.H. Choi, Y.S. Hwang, Phys. Plasmas 13, 093501 (2006)

  • L.F. Dong, Y.Y. Qi, Z.C. Zhao, Y.H. Li, Plasma Sources Sci. Technol. 17, 015015 (2008)

    Google Scholar 

  • W.G. Wang, Y. Xu, Z.W. Liu, A.M. Zhu, Spectrosc. Spect. Anal. 26, 1589 (2006)

    Google Scholar 

  • X.J. Xu, D.C. Zu, The Gas Discharge Physics (Shanghai, Fudan University Press, 1996)

  • A. Rousseau, A. Granier, G. Gousset, P. Leprince, J. Phys. D: Appl. Phys. 27, 1412 (1994)

    Google Scholar 

  • O. Fukumasa, J. Phys. D: Appl. Phys. 22, 1668 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Xu, Y., Dong, C. et al. Measurement of atomic hydrogen density in non-thermal H2 plasmas via threshold ionisation-molecular beam mass spectrometry. Eur. Phys. J. D 50, 257–264 (2008). https://doi.org/10.1140/epjd/e2008-00232-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2008-00232-x

PACS

Navigation