Skip to main content

Detecting some three-qubit MUB diagonal entangled states via nonlinear optimal entanglement witnesses


The three qubits mutually unbiased bases (MUB) diagonal density matrices with maximally entanglement in Greenberger-Horne-Zeilinger (GHZ) basis are studied. These are a natural generalization of Bell-state diagonal density matrices. The linearity of positive partial transpose (PPT) conditions allows one to specify completely PPT states or feasible region (FR) which form a polygon, where the projection of the feasible region to some two dimensional planes has lead to better visualization. To reveal the PPT entangled regions of these density matrices, we manipulate some appropriate optimal non-decomposable linear entanglement witnesses (EWs) as the envelope of family of linear optimal non-decomposable EWs. These nonlinear EWs are nonlinear functional of MUB diagonal states, so that they are nonnegative valued over all separable, but they are negative valued over some PPT entangled MUB diagonal states. Even though, these nonlinear EWs can not separate completely, the PPT entanglement region from separable one, but however in special cases they lead to necessary and sufficient condition for separability. To support the evidence, we study three categories for special choices of parameters in density matrices, and using the nonlinear EWs we can distinguish the region of PPT entangled states and separable states, completely. At the end some numerical simulations are provided to show the practical applicability of these nonlinear EWs in detecting some PPT entangled MUB diagonal states.

This is a preview of subscription content, access via your institution.


  1. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935); E. Schrödinger, Naturwissenschaften 23, 807 (1935); J.S. Bell, Physics N.Y. 1, 195 (1964)

    Google Scholar 

  2. D. Deutsch, Proc. R. Soc. London, Ser. A 425, 73 (1989); P. Shor, SIAM J. Comput. 26, 1484 (1997)

  3. A. Ekert, Phys. Rev. Lett. 67, 661 (1991)

    Google Scholar 

  4. C. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993)

    Google Scholar 

  5. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Elbl, H. Weinfurter, A. Zeilinger, Nature 390, 575 (1997); D. Boschi, S. Brance, F. de Martini, L. Hardy, S. Popescu, Phys. Rev. Lett. 80, 1121 (1998)

  6. C.H. Bennett, S.J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992)

    Google Scholar 

  7. K. Mattle, H. Weinfurter, P. Kwiat, A. Zeilinger, Phys. Rev. Lett. 76, 4656 (1996)

    Google Scholar 

  8. R. Cleve, H. Buhrman, Phys. Rev. A 56, 1201 (1997)

    Google Scholar 

  9. J.L. Romero, G. Björk, A.B. Klimov, L.L. Sánchez-Soto, Phys. Rev. A 72, 062310 (2005)

    Google Scholar 

  10. M.A. Jafarizadeh, G. Najarbashi, H. Habibian, Phys. Rev. A 75, 052326 (2007)

  11. M.A. Jafarizadeh, M. Rezaee, S.K.A. Seyed Yagoobi, Phys. Rev. A 72, 062106 (2005)

  12. M.A. Jafarizadeh, G. Najarbashi, Y. Akbari, H. Habibian, Eur. Phys. J. D 47, 233 (2008)

    Google Scholar 

  13. M.A. Jafarizadeh, R. Sufiani, Phys. Rev. A 77, 012105 (2008)

  14. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, eprint arXiv:quant-ph/0702225

  15. C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, W.K. Wootters, Phys. Rev. A 54, 3824 (1996)

    Google Scholar 

  16. A. Peres, Phys. Rev. Lett. 77, 1413 (1996)

  17. M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A 223, 1 (1996)

    Google Scholar 

  18. S.L. Woronowicz, Rep. Math. Phys. 10, 165 (1976)

  19. P. Horodecki, Phys. Lett. A 232, 333 (1997)

  20. B.M. Terhal, Phys. Lett. A 271, 319 (2000)

  21. A. Jamiolkowski, Rep. Math. Phys. 3, 275 (1972)

    Google Scholar 

  22. T. Moroder, O. Gühne, N. Lütkenhaus, Phys. Rev. A 78, 032326 (2008)

    Google Scholar 

  23. M.A. Jafarizadeh et al., Phys. Rev. A 78, 032313 (2008)

  24. C. Archer, J. Math. Phys. 46, 022106 (2005).

    Google Scholar 

  25. M. Planat, H.C. Rosu, Eur. Phys. J. D 36, 133 (2005)

    Google Scholar 

  26. T.C. Bschorr, D.G. Fischer, M. Freyberger, Phys. Lett. A 292, 15 (2001)

    Google Scholar 

  27. L.X. Cen, N.J. Wu, F.H. Yang, J.H. An, Phys. Rev. A 65, 052318 (2002)

    Google Scholar 

  28. J. Lawrence, C. Brukner, A. Zeilinger, Phys. Rev. A 65, 032320 (2002)

  29. A. Acín, D. Bruß, M. Lewenstein, A. Sanpera, Phys. Rev. Lett. 87, (2001)

  30. M.A. Jafarizadeh, M. Rezaee, S. Ahadpour, Phys. Rev. A 74, 042335 (2006)

    Google Scholar 

  31. W. Rudin, Functional Analysis (McGraw-Hill, Singapore, 1991)

  32. A.C. Doherty, P.A. Parrilo, F.M. Spedalieri, Phys. Rev. A 69, 022308 (2004)

  33. M. Lewenstein, D. Bruß, J.I. Cirac, B. Kraus, M. Kus, J. Samsonowicz, A. Sanpera, R. Tarrach, J. Mod. Opt. 47, 2841 (2000)

    Google Scholar 

  34. E.W. Weisstein, CRC Concise Encyclopedia of Mathematics, 2nd edn. (CRC Press, 2003)

  35. I. Bengtsson, AIP Conf. Proc. 750, 63 (2005)

    Google Scholar 

  36. I. Bengtsson, W. Bruzda, A. Ericsson, J.A. Larsson, W. Tadej, K. Zyczkowski, J. Math. Phys. 48, 052106 (2007)

    Google Scholar 

  37. M. Grassl, in Proceedings ERATO Conference on Quantum Information Science 2004 (EQIS 2004), Tokyo (2004), pp. 60-61, e-print arXiv:quant-ph/0406175

  38. H.C. Rosu, M. Planat, M. Saniga, AIP Conf. Proc. 734, 315 (2004)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to M. A. Jafarizadeh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jafarizadeh, M., Mahdian, M., Heshmati, A. et al. Detecting some three-qubit MUB diagonal entangled states via nonlinear optimal entanglement witnesses. Eur. Phys. J. D 50, 107–121 (2008).

Download citation


  • 03.67.Mn Entanglement measures, witnesses, and other characterizations
  • 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell’s inequalities, GHZ states, etc.)