The European Physical Journal D

, Volume 49, Issue 2, pp 201–210 | Cite as

Optical characterization and manipulation of alkali metal nanoparticles in porous silica

  • A. BurchiantiEmail author
  • A. Bogi
  • C. Marinelli
  • C. Maibohm
  • E. Mariotti
  • S. Sanguinetti
  • L. Moi


Rubidium and cesium metal nanoparticles were grown in nanoporous silica samples placed in alkali vapor cells. Their size and shape were investigated by measuring the sample optical transmittance. Spectral changes due to photodesorption processes activated by weak light were also analyzed. Alkali atoms photoejected from the silica walls diffuse through and out of the nanopores, modifying both the nanoparticle distribution in the silica matrix and the atomic vapor pressure in the cell volume. The number of rubidium and cesium atoms burst out of the samples was measured as a function of photon energy and fluence. The optical absorption measurements together with the analysis of the photodesorption yield give a complete picture of the processes triggered by light inside the nanopores. We show that atomic photodesorption, upon proper choice of light frequency and intensity, induces either growth or evaporation of nanosized alkali metal clusters. Cluster size and shape are determined by the host-guest interaction.


78.67.Bf Nanocrystals and nanoparticles 68.43.Tj Photon stimulated desorption 64.70.Nd Structural transitions in nanoscale materials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Ditlbacher, B. Lamprecht, A. Leitner, F.R. Aussenegg, Opt. Lett. 25, 563 (2000)CrossRefADSGoogle Scholar
  2. 2.
    J.W.M. Chon, C. Bullen, P. Zijlstra, M. Gu, Adv. Funct. Mater. 17, 875 (2007)CrossRefGoogle Scholar
  3. 3.
    M. Rini, A. Cavalleri, R.W. Schoenlein, R. López, L.C. Feldman, J.R.F. Haglund, L.A. Boatner, T.E. Haynes, Opt. Lett. 30, 558 (2005)CrossRefADSGoogle Scholar
  4. 4.
    Y. Takeda, O. Plaksin, J. Lu, N. Kishimoto, Nucl. Instrum. Meth. B 242, 194 (2006)CrossRefADSGoogle Scholar
  5. 5.
    T. Schalkammer, Chem. Mon. 129, 1067 (1998)Google Scholar
  6. 6.
    D.A. Schultz, Curr. Opin. Biotechnol. 14, 13 (2003)CrossRefMathSciNetGoogle Scholar
  7. 7.
    A.D. McFarland, R.P. Van Duyne, Nano Lett. 3, 1057 (2003)CrossRefGoogle Scholar
  8. 8.
    Clusters and Colloids. From Theory to Application, edited by G. Schmid (VCH, Weinheim, Germany, 1994)Google Scholar
  9. 9.
    S.I. Lee, T.W. Noh, J.R. Gaines, Y.H. Ko, E.R. Kreidler, Phys. Rev. B 37, 2918 (1988)CrossRefADSGoogle Scholar
  10. 10.
    C.A. Foss, G.L. Hornyak, J.A. Stockert, C.R. Martin, J. Phys. Chem. 98, 2963 (1994)CrossRefGoogle Scholar
  11. 11.
    W. Cai, M. Tan, G. Wang, L. Zhang, Appl. Phys. Lett. 69, 2980 (1996)CrossRefADSGoogle Scholar
  12. 12.
    W. Cai, H. Hofmeister, T. Rainer, Physica E 11, 339 (2001)CrossRefADSGoogle Scholar
  13. 13.
    W. Chen, W. Cai, L. Zhang, G. Wang, L. Zhang, Physica E 238, 291 (2001)Google Scholar
  14. 14.
    K.B. Ameen, T. Rajasekharan, M. Rajasekharan, J. Non Cryst. Solids 352, 737 (2006)CrossRefADSGoogle Scholar
  15. 15.
    Y. Nozue, T. Kodaira, T. Goto, Phys. Rev. Lett. 68, 3789 (1992)CrossRefADSGoogle Scholar
  16. 16.
    V.I. Srdanov, G.D. Stucky, E. Lippmaa, G. Engelhardt, Phys. Rev. Lett. 80, 2449 (1998)CrossRefGoogle Scholar
  17. 17.
    T. Nakano, K. Goto, I. Watanabe, F.L. Pratt, Y. Ikemoto, Y. Nozue, Physica B 374, 21 (2006)CrossRefADSGoogle Scholar
  18. 18.
    A. Burchianti, A. Bogi, C. Marinelli, E. Mariotti, L. Moi, Opt. Express 16, 1377 (2008)CrossRefADSGoogle Scholar
  19. 19.
    A. Burchianti, A. Bogi, C. Marinelli, C. Maibohm, E. Mariotti, L. Moi, Phys. Rev. Lett. 97, 157404 (2006)CrossRefADSGoogle Scholar
  20. 20.
    A. Gozzini, F. Mango, J.H. Xu, G. Alzetta, F. Maccarrone, R.A. Bernheim, Nuovo Cim. D 15, 709 (1993)CrossRefADSGoogle Scholar
  21. 21.
    M. Meucci, E. Mariotti, P. Bicchi, C. Marinelli, L. Moi, Europhys. Lett. 25, 639 (1994)CrossRefADSGoogle Scholar
  22. 22.
    W. Hoheisel, K. Jungmann, M. Vollmer, R. Weidenauer, F. Träger, Phys. Rev. Lett. 60, 1649 (1988)CrossRefADSGoogle Scholar
  23. 23.
    S.N. Atutov, V. Biancalana, P. Bicchi, C. Marinelli, E. Mariotti, M. Meucci, A. Nagel, K.A. Nasyrov, S. Rachini, L. Moi, Phys. Rev. A 60, 4693 (1999)CrossRefADSGoogle Scholar
  24. 24.
    C. Marinelli, A. Burchianti, A. Bogi, F. della Valle, G. Bevilacqua, E. Mariotti, S. Veronesi, L. Moi, Eur. Phys. J. D 37, 319 (2006)CrossRefADSGoogle Scholar
  25. 25.
    E.B. Alexandrov, M.V. Balabas, D. Budker, D. English, D.F. Kimball, C.H. Li, V.V. Yashchuk, Phys. Rev. A 66, 042903 (2002)CrossRefADSGoogle Scholar
  26. 26.
    A. Cappello, C. de Mauro, A. Bogi, A. Burchianti, S.D. Renzone, A. Khanbekyan, C. Marinelli, E. Mariotti, L. Tomassetti, L. Moi, J. Chem. Phys. 127, 044706 (2007)CrossRefADSGoogle Scholar
  27. 27.
    S. Gozzini, A. Lucchesini, L. Marmugi, G. Postorino, Eur. Phys. J. D 47, 1 (2008)CrossRefADSGoogle Scholar
  28. 28.
    J. Viereck, F. Stietz, M. Stuke, T. Wenzel, F. Träger, Surf. Sci. 383, L749 (1997)CrossRefGoogle Scholar
  29. 29.
    J. Brewer, H.G. Rubahn, Chem. Phys. 303, 1 (2004)CrossRefADSGoogle Scholar
  30. 30.
    C. Klempt, T. van Zoest, T. Henninger, O. Topic, E. Rasel, W. Ertmer, J. Arlt, Phys. Rev. A 73, 013410 (2006)CrossRefADSGoogle Scholar
  31. 31.
    A. Burchianti et al., Europhys. Lett. 67, 983 (2004)CrossRefADSGoogle Scholar
  32. 32.
    A.M. Bonch-Bruevich, T.A. Vartanyan, Y.N. Maksimov, S.G. Przhibel’ski, V.V. Khromov, Zh. Eksp. Teor. Fiz. 97, 1077 (1990)Google Scholar
  33. 33.
    B.P. Anderson, M.A. Kasevich, Phys. Rev. A 63, 023404 (2001)CrossRefADSGoogle Scholar
  34. 34.
    S.N. Atutov et al., Phys. Rev. A 67, 053401 (2003)CrossRefADSGoogle Scholar
  35. 35.
    S. Du, M.B. Squires, Y. Imai, L. Czaia, R.A. Saravanan, V. Bright, J. Reichel, T.W. Hänsch, D.Z. Anderson, Phys. Rev. A 70, 053606 (2004)CrossRefADSGoogle Scholar
  36. 36.
    S. Ghosh, A.R. Bhagwat, C.K. Renshaw, S. Goh, A.L. Gaeta, B.J. Kirby, Phys. Rev. Lett. 97, 023603 (2006)CrossRefADSGoogle Scholar
  37. 37.
    D. Domínguez-Ariza, N. Lopez, F. Illas, G. Pacchioni, T.E. Madey, Phys. Rev. B 69, 075405 (2004)CrossRefADSGoogle Scholar
  38. 38.
    W. Hoheisel, M. Vollmer, F. Träger, Phys. Rev. B 48, 17463 (1993)CrossRefADSGoogle Scholar
  39. 39.
    A. Hatakeyama, K. Enomoto, N. Sugimoto, T. Yabuzaki, Phys. Rev. A 65, 022904 (2002)CrossRefADSGoogle Scholar
  40. 40.
    M. Vollmer, R. Weidenauer, W. Hoheisel, U. Schulte, F. Träger, Phys. Rev. B 40, 12509 (1989)CrossRefADSGoogle Scholar
  41. 41.
    I.M. Belusova, E.A. Gavronskaya, V.A. Grigor’ev, A.G. Skobelev, O.V. Andreeva, I.E. Obyknovennaya, A.S. Cherkasov, J. Opt. Technol. 68, 882 (2001), porous glass samples were provided by I.E. ObyknovennayaADSGoogle Scholar
  42. 42.
    A.I.K. Kikoin, ed., Tablitsi Fizicheskikh Velichin (Tables of Physical Values) (Atomizdat, Moscow, 1976), cited by Ref. [24]Google Scholar
  43. 43.
    M.A. Bouchiat, J. Brossel, Phys. Rev. 147, 41 (1966)CrossRefADSGoogle Scholar
  44. 44.
    U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 of Springer Series in Materials Science (Springer, Berlin, 1995)Google Scholar
  45. 45.
    H. Raether, Excitations of Plasmons and Interband Transitions by Electrons, Vol. 88 of Springer Tracs in Modern Physics (Springer, New York, 1980)Google Scholar
  46. 46.
    R. Gans, Ann. Phys. 47, 270 (1915)CrossRefGoogle Scholar
  47. 47.
    S. Link, M. Mohamed, M. El-Sayed, J. Phys. Chem. B 103, 3073 (1999)CrossRefGoogle Scholar
  48. 48.
    C. Noguez, J. Phys. Chem. C 111, 3806 (2007)CrossRefGoogle Scholar
  49. 49.
    N.V. Smith, Phys. Rev. B 2, 2840 (1970)CrossRefADSGoogle Scholar
  50. 50.
    V.M. Rentería, J. García-Macedo, Mat. Chem. Phys. 91, 88 (2005)CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • A. Burchianti
    • 1
    Email author
  • A. Bogi
    • 1
  • C. Marinelli
    • 1
  • C. Maibohm
    • 1
    • 2
  • E. Mariotti
    • 1
  • S. Sanguinetti
    • 3
  • L. Moi
    • 1
  1. 1.CNISM and Physics DepartmentUniversity of SienaSienaItaly
  2. 2.Mads Clausen InstituteNanoSYD, University of Southern DenmarkSønderborgDenmark
  3. 3.Physics DepartmentUniversity of PisaPisaItaly

Personalised recommendations