Skip to main content
Log in

Formation of mixed clusters in a pulsed supersonic helium-oxygen-isoprene jet

  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

An experimental study of the formation of mixed van der Waals oxygen-isoprene complexes, generated in an expanding supersonic helium-oxygen-isoprene jet at various stagnation pressures and at diverse oxygen and isoprene concentrations, has been performed. To measure the composition and distribution of the partial densities of the individual components, molecular beam mass spectrometry was adapted to pulsed modes of gas source operation. The particularities of applying mass spectrometry to studying clustered isoprene streams in a pulsed mode have been discussed. The composition of small clusters generated in a free supersonic jet has been checked for dependencies upon the initial mixture composition and stagnation pressure. The mechanism of nucleation has been identified for different partial concentrations of impurities in the helium stream. It has been shown that, even at a 0.3% concentration of isoprene in the mixture, nucleation starts with the formation of hydrocarbon complexes. The specific features of the dissociative ionization of van der Waals complexes, consisting of pure isoprene and mixed complexes, have been discussed. The conditions needed for the formation of binary oxygen-isoprene van der Waals complexes have been identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.J. Blake, D.G. McCoy, JQSRT 38, 113 (1987).

    ADS  Google Scholar 

  2. P. Bernath, M. Carleer, S. Fally, A. Jenouvrier, A.C. Vandaele, C. Hermans, M.F. Mérienne, R. Colin, Chem. Phys. Lett. 297, 293 (1998)

    Article  ADS  Google Scholar 

  3. G. DeBoer, A.P. Prince, M.A. Yong, J. Chem. Phys. 115, 3112 (2001)

    Article  ADS  Google Scholar 

  4. B.F. Parsons, D.W. Chandler, E.C. Skulte, S.L. Li, E.A. Wade, J. Phys. Chem. A 108, 9742 (2004)

    Article  Google Scholar 

  5. G.A. Bogdanchikov, A.V. Baklanov, D.H. Parker, Chem. Phys. Lett. 385, 486 (2004)

    Article  ADS  Google Scholar 

  6. O.F. Hagena, Surf. Sci. 106, 101 (1981)

    Article  ADS  Google Scholar 

  7. J.H. Seinfeld, S.N. Pandis, Atmospheric chemistry and physics (Wiley-Interscience, 1997)

  8. A.E. Zarvin, N.G. Korobeishchikov, V.Zh. Madirbaev, G.G. Gartvich, V.V. Kalyada, V.S. Airapetyan, Instrum. Exp. Tech. 43, 641 (2000)

    Article  Google Scholar 

  9. G.G. Gartvich, V.A. Dudnikov, A.E. Zarvin, V.V. Kalyada, V.Zh. Madirbaev, Instrum. Exp. Tech. 40, 271 (1997)

    Google Scholar 

  10. K.L. Saenger, J. Chem. Phys. 57, 3844 (1972)

    Article  Google Scholar 

  11. S.F. Chekmarev, Pulse gas flows in supersonic nozzles and jets (Inst. Thermophysics, Novosibirsk, 1990)

    Google Scholar 

  12. O.F. Hagena, W. Obert, J. Chem. Phys. 56, 1793 (1972)

    Article  ADS  Google Scholar 

  13. M.L. Aleksandrov, Yu.S. Kusner, Gasdynamic molecular, ionic and cluster beams (Science, Leningrad, 1989)

    Google Scholar 

  14. E.L. Knuth, B. Schilling, J.P. Toennies, in Prog. 19 International Symposium on Rarefied Gas Dynamic, Vol. 1 (Oxford, England, 1995), p. 270

    Google Scholar 

  15. U. Buck, H. Meyer, J. Chem. Phys. 84, 4854 (1986)

    Article  ADS  Google Scholar 

  16. A. Bastida, N. Haberstadt, J.A. Beswick, F.X. Gadea, U. Buck, R. Galonska, C. Lauenstein, Chem. Phys. Lett. 249, 1 (1996)

    Article  ADS  Google Scholar 

  17. A.E. Zarvin, N.G. Korobeishchikov, V.Zh. Madirbaev, G.G. Gartvich, V.V. Kalyada, R.G. Sharafutdinov, Instrum. Exp. Tech. 48, 817 (2005)

    Article  Google Scholar 

  18. D. Golomb, R.E. Good, A.B. Bailey, M.R. Busby, R. Dawbarn, J. Chem. Phys. 57, 3844 (1972)

    Article  ADS  Google Scholar 

  19. S.A. Palopezhentsev, V.N. Yarygin, A.E. Zarvin, V.Zh. Madirbaev, in Proceedings of the 15th International Symposium on Rarefied Gas Dynamics, Vol. 2 (Grado, Italy, 1986), p. 179

    Google Scholar 

  20. J. Farges, M.F. de Feraudy, B. Raoult, G. Torchet, J. Chem. Phys. 84, 3491 (1986)

    Article  ADS  Google Scholar 

  21. U. Buck, R. Krohne, J. Chem. Phys. 105, 5408 (1996)

    Article  ADS  Google Scholar 

  22. R. Karnbach, M. Joppien, J. Stapelfeldt, J. Wörmer, T. Möller, Rev. Sci. Instrum. 64, 2838 (1993)

    Article  ADS  Google Scholar 

  23. B. Mate, G. Tajeda, S. Montero, J. Chem. Phys. 108, 2676 (1998)

    Article  ADS  Google Scholar 

  24. N.G. Korobeishchikov, A.E. Zarvin, V.Zh. Madirbaev, J. Tech. Phys. 49, 973 (2004)

    Article  ADS  Google Scholar 

  25. A.E. Zarvin, V.Zh. Madirbaev, N.G. Korobeishchikov, G.G. Gartvich, R.G. Sharafutdinov, J. Tech. Phys. 50, 1444 (2005)

    Article  Google Scholar 

  26. M.J. Vasile, F.A. Stevie, J. Chem. Phys. 75, 2399 (1981)

    Article  ADS  Google Scholar 

  27. N.G. Korobeishchikov, A.E. Zarvin, V.Zh. Madirbaev, R.G. Sharafutdinov, Plasma Chem. Plasma Proc. 25, 319 (2005)

    Article  Google Scholar 

  28. NIST Chemistry WebBook

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Korobeishchikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarvin, A.E., Korobeishchikov, N.G., Kalyada, V.V. et al. Formation of mixed clusters in a pulsed supersonic helium-oxygen-isoprene jet. Eur. Phys. J. D 49, 101–110 (2008). https://doi.org/10.1140/epjd/e2008-00146-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2008-00146-7

PACS

Navigation