Skip to main content
Log in

Dynamics of atomic decay in a special one dimensional photonic crystal

  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Recently, Liu et al. [Phys. Rev. B 74, 075314 (2006)] pointed out that the atomic instant decay rate in one dimensional photonic crystal (1DPC) showed a series of pulse-like peaks with time. In this paper, we continue their work, and adopt a special 1DPC, in which the refractive indexes of both constitution layers in a period are the same, to perform the analysis in detail. Our results show that the pulse-like peak of instant decay rate originates from the interaction between the atom and the sub-reservoir, the latter of which corresponds to the group of reflected fields having the same optical distance. The atom interacts with such a sub-reservoir mainly after the time needed for propagation. However, near the arrival time of the reflected field, the atomic level is broadened and couples to all frequency components of the sub-reservoir, and the pulse-like peak of instant decay rate appears. Although our conclusion is deduced with the special 1DPC, it is also valid for more general cases and might be useful to measure the quantum Zeno and anti-Zeno effect, since the interval of repeated measurements may be expanded to several optical cycles in 1DPC, which will facilitate the observation of the quantum Zeno or anti-Zeno effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.H. Liu, J.P. Xu, S.Y. Zhu, Phys. Rev. B 74, 075314 (2006)

    Article  ADS  Google Scholar 

  2. E.M. Purcell, Phys. Rev. 69, 681 (1946)

    Article  Google Scholar 

  3. M. Ley, R. Loudon, J. Mod. Optics 34, 227 (1987)

    Article  ADS  Google Scholar 

  4. R.G. Hullet, E.S. Hifer, D. Kleppner, Phys. Rev. Lett. 55, 2137 (1985)

    Article  ADS  Google Scholar 

  5. F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, R. Loudon, Phys. Rev. A 43, 2480 (1991)

    Article  ADS  Google Scholar 

  6. S.M. Dutra, P.L. Knight, Phys. Rev. A 53, 3587 (1996)

    Article  ADS  Google Scholar 

  7. I. Takahashi, K. Ujihara, Phys. Rev. A 56, 2299 (1997); H.T. Dung, K. Ujihara, Phys. Rev. A 60, 4067 (1999)

    Article  ADS  Google Scholar 

  8. D.P. Fussell, M.M. Dignam, M.J. Steel, C.M. de Sterke, R.C. McPhedran, Phys. Rev. A 74, 043806 (2006)

    Article  ADS  Google Scholar 

  9. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)

    Article  ADS  Google Scholar 

  10. S. John, Phys. Rev. Lett. 58, 2486 (1987)

    Article  ADS  Google Scholar 

  11. S. John, J. Wang, Phys. Rev. Lett. 64, 2418 (1990); S. John, J. Wang, Phys. Rev. B 43, 12772 (1991)

    Article  ADS  Google Scholar 

  12. S. John, T. Quang, Phys. Rev. A 50, 1764 (1994); T. Quang, S. John, Phys. Rev. A 56, 4273 (1997)

    Article  ADS  Google Scholar 

  13. S.Y. Zhu, Y.P. Yang, H. Chen, H. Huang, Phys. Rev. Lett. 79, 205 (1997)

    Article  ADS  Google Scholar 

  14. S.Y. Zhu, Y.P. Yang, H. Chen, H. Zheng, M.S. Zubairy, Phys. Rev. Lett. 84, 2136 (2000); Y.P. Yang, S.Y. Zhu, Phys. Rev. A 62, 013805 (2000); Y.P. Yang, M. Fleischhauer, S.Y. Zhu, Phys. Rev. A 68, 043805 (2003); Y.P. Yang, M. Fleischhauer, S.Y. Zhu, Phys. Rev. A 68, 022103 (2003)

    Article  ADS  Google Scholar 

  15. Z.Y. Li, L.L. Lin, Z.Q. Zhang, Phys. Rev. Lett. 84, 4341 (2000)

    Article  ADS  Google Scholar 

  16. S. Hughes, Phys. Rev. Lett. 94, 227402 (2005); G.X. Li, F.L. Li, S.Y. Zhu, Phys. Rev. A 64, 013819 (2001); Z.Y. Li, Y. Xia, Phys. Rev. A 63, 043817 (2001)

    Article  ADS  Google Scholar 

  17. J.P. Xu, N.H. Liu, S.Y. Zhu, Phys. Rev. E 73, 016604 (2006)

    Article  ADS  Google Scholar 

  18. J. Witzens, M. Hochberg, T.B. Jones, A. Scherer, Phys. Rev. E 69, 046609 (2004); A. Settimi et al., Phys. Rev. E 68, 026614 (2003); A.S. Sánchez, P. Halevi, Phys. Rev. E 72, 056609 (2005)

    Article  ADS  Google Scholar 

  19. A. Beskow, J. Nilsson, Ark. Fys. 34, 561 (1967); L.A. Khalfin, JETP Lett. 8, 65 (1968); B. Misra, E.C.G. Sudarshan, J. Math. Phys. 18, 758 (1977); A. Peres, Am. J. Phys. 48, 931 (1980); W.H. Itano, D.J. Heinzen, J.J. Bollinger, D.J. Wineland, Phys. Rev. A 41, 2295 (1990)

    Google Scholar 

  20. A. Luis, J. Perina, Phys. Rev. Lett. 76, 4340 (1996); A.G. Kofman, G. Kurizki, Phys. Rev. A 54, R3750 (1996); M. Lewenstein, K. Rzazewski, Phys. Rev. A 61, 022105 (2000)

    Article  ADS  Google Scholar 

  21. P. Facchi, H. Nakazato, S. Pascazio, Phys. Rev. Lett. 86, 2699 (2001)

    Article  ADS  Google Scholar 

  22. A.G. Kofman, G. Kurizki, Nature 405, 546 (2000)

    Article  ADS  Google Scholar 

  23. C.Q. Cao, W. Long, J.K. Wei, H. Cao, Phys. Rev. A 64, 043810 (2001); C.Q. Cao, C.G. Yu, H. Cao, Eur. Phys. J. D 23, 279 (2003)

    Article  ADS  Google Scholar 

  24. H.P. Breuer, Eur. Phys. J. D 29, 105 (2004)

    Article  ADS  Google Scholar 

  25. R.J. Glauber, M. Lewenstein, Phys. Rev. A 43, 467 (1991); G.L.J.A. Rikken, Y.A.R.R. Kessener, Phys. Rev. Lett. 74, 880 (1995); S. Scheel, L. Knöll, D.G. Welsch, Phys. Rev. A 60, 4094 (1999)

    Article  ADS  Google Scholar 

  26. M.O. Scully, M. Suhail Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J.P., Yang, Y.P. Dynamics of atomic decay in a special one dimensional photonic crystal. Eur. Phys. J. D 49, 135–145 (2008). https://doi.org/10.1140/epjd/e2008-00139-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2008-00139-6

PACS

Navigation