Skip to main content
Log in

Entangled quantum heat engines based on two two-spin systems with Dzyaloshinski-Moriya anisotropic antisymmetric interaction

  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We construct an entangled quantum heat engine (EQHE) based on two two-spin systems with Dzyaloshinski-Moriya (DM) anisotropic antisymmetric interaction. By applying the explanations of heat transferred and work performed at the quantum level in Kieu’s work [Phys. Rev. Lett. 93, 140403 (2004)], the basic thermodynamic quantities, i.e., heat transferred, net work done in a cycle and efficiency of EQHE are investigated in terms of DM interaction and concurrence. The validity of the second law of thermodynamics is confirmed in the entangled system. It is found that there is a same efficiency for both antiferromagnetic and ferromagnetic cases, and the efficiency can be controlled in two manners: (1) only by spin-spin interaction J and DM interaction D; (2) only by the temperature T and concurrence C. In order to obtain a positive net work, we need not entangle all qubits in two two-spin systems and we only require the entanglement between qubits in a two-spin system not be zero. As the ratio of entanglement between qubits in two two-spin systems increases, the efficiency will approach infinitely the classical Carnot one. An interesting phenomenon is an abrupt transition of the efficiency when the entanglements between qubits in two two-spin systems are equal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.D. Kieu, Phys. Rev. Lett. 93, 140403 (2004); T.D. Kieu, Eur. Phys. J. D 39, 115 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  2. I. Zutic, J. Fabian, S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004)

    ADS  Google Scholar 

  3. Q.F. Sun, X.C. Xie, J. Wang, Phys. Rev. Lett. 98, 196801 (2007)

    Article  ADS  Google Scholar 

  4. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)

    Article  MATH  ADS  Google Scholar 

  5. E. Schrödinger, Proc. Cam. Phil. Soc. 32, 446 (1936)

    Article  Google Scholar 

  6. J. Preskill, Lect. Notes. Quant. Inform. Comput. (2001) http://www.theory.caltech.edu/~preskill/ph219

  7. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, arXiv:quant-ph/0702225 (2007)

  8. C.H. Bennett, D.P. DiVincenzo, Nature 404, 247 (2000)

    Article  ADS  Google Scholar 

  9. M.C. Arnesen, S. Bose, V. Vedral, Phys. Rev. Lett. 87, 277901 (2001)

    Article  ADS  Google Scholar 

  10. D. Gunlycke et al., Phys. Rev. A 64, 042302 (2001)

    Article  ADS  Google Scholar 

  11. X. Wang, P. Zanardi, Phys. Lett. A 301, 1 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. M. Asoudeh, V. Karimipour, Phys. Rev. A 70, 052307 (2004); M. Asoudeh, V. Karimipour, Phys. Rev. A 71, 022308 (2005)

    Article  ADS  Google Scholar 

  13. T. Zhang, W.-T. Liu, P.-X. Chen, C.-Z. Li, Phys. Rev. A 75, 062102 (2007)

    Article  ADS  Google Scholar 

  14. I. Dzyaloshinskii, J. Phys. Chem. Sol. 4, 241 (1958)

    Article  ADS  Google Scholar 

  15. T. Moriya, Phys. Rev. Lett. 4, 228 (1960); T. Moriya, Phys. Rev. 117, 635 (1960); T. Moriya, Phys. Rev. 120, 91 (1960)

    Article  ADS  Google Scholar 

  16. X.G. Wang, Phys. Lett. A 281, 101 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. S. Hill, W.K. Wootters, Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  18. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  19. E. Schrödinger, Statistical Thermodynamics (Dover, New York, 1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. -F. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, G.F. Entangled quantum heat engines based on two two-spin systems with Dzyaloshinski-Moriya anisotropic antisymmetric interaction. Eur. Phys. J. D 49, 123–128 (2008). https://doi.org/10.1140/epjd/e2008-00133-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2008-00133-0

PACS

Navigation