Skip to main content
Log in

Subluminal and superluminal propagation in Er3+ doped fiber Bragg grating

  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The method to pump the FBG written into an Er3+-doped optical fiber is proposed to decrease or increase the group velocity of a probing pulse based on the fact that a pump-induced process changes the refractive index and dispersion associated with the 4I15/2-4I13/2 transition in Er3+-doped optical fiber. The system equations are derived. The group velocity modification is numerically demonstrated and discussed with the effects of an optical pump power, fiber Bragg grating length, doping concentration of Er3+ ions, and modulation amplitude of the grating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Marangos, Nature 406, 243 (2000); L.J. Wang, A. Kuzmich, A. Dogariu, Nature 406, 277 (2000)

    Article  ADS  Google Scholar 

  2. L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, Nature 397, 594 (1999); A.V. Turukhin et al., Phys. Rev. Lett. 88, 023602 (2002); M.S. Bigelow, N.N. Lepeshkin, R.W. Boyd, Science 301, 200 (2003)

    Article  ADS  Google Scholar 

  3. A.M. Steinberg, P.G. Kwiat, R.Y. Chiao, Phys. Rev. Lett. 71, 708 (1993)

    Article  ADS  Google Scholar 

  4. Ch. Spielmann, R. Sxipocs, A. Stingl, F. Krausz, Phys. Rev. Lett. 73, 2308 (1994)

    Article  ADS  Google Scholar 

  5. D. Mugnai, A. Ranfagni, L. Ronchi, Phys. Lett. A 247, 281 (1998)

    Article  ADS  Google Scholar 

  6. S. Longhi, M. Marano, P. Laporta, M. Belmonte, Phys. Rev. E 64, 055602(R) (2001)

    ADS  Google Scholar 

  7. K.Y. Song, M.G. Herráez, L. Thévenaz, Opt. Express 13, 82 (2005)

    Article  ADS  Google Scholar 

  8. Yoshitomo Okawachi, J.E. Sharping, A.L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005)

    Article  ADS  Google Scholar 

  9. Miguel González Herráez, Kwang Yong Song, Luc Thévenaz, Opt. Express 14, 1395 (2006)

    Article  ADS  Google Scholar 

  10. M. Janos, R.A. Minasian, Elec. Lett. 33, 78 (1997)

    Article  Google Scholar 

  11. S.C. Fleming, T.J. Whitley, IEEE J. Quant. Elect. 32, 1113 (1996)

    Article  ADS  Google Scholar 

  12. C. Thirstrup, Y. Shi, B. Palsdottir, J. Lightwave Technol. 14, 732 (1996)

    Article  ADS  Google Scholar 

  13. E. Desurvire, J. Lightwave Technol. 8, 1517 (1990)

    Article  ADS  Google Scholar 

  14. J.N. Sandoe, P.H. Sarkies, S. Sparke, J. Phys. D 5, 1788 (1972)

    Article  ADS  Google Scholar 

  15. J.E. Sipe, L. Plladian, C.M. de Sterke, J. Opt. Soc. Am. A 11, 1307 (1994)

    Article  ADS  Google Scholar 

  16. V.E. Kochergin, E.V. Kochergin, Opt. Commun. 211, 121 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Ham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuo, Z.C., Ham, B.S. Subluminal and superluminal propagation in Er3+ doped fiber Bragg grating. Eur. Phys. J. D 49, 117–121 (2008). https://doi.org/10.1140/epjd/e2008-00120-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2008-00120-5

PACS

Navigation