Skip to main content
Log in

On the optimality of individual entangling-probe attacks against BB84 quantum key distribution

  • Highlight Paper
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

Some MIT researchers [Phys. Rev. A 75, 042327 (2007)] have recently claimed that their implementation of the Slutsky-Brandt attack [Phys. Rev. A 57, 2383 (1998); Phys. Rev. A 71, 042312 (2005)] to the BB84 quantum-key-distribution (QKD) protocol puts the security of this protocol “to the test” by simulating “the most powerful individual-photon attack” [Phys. Rev. A 73, 012315 (2006)]. A related unfortunate news feature by a scientific journal [G. Brumfiel, Quantum cryptography is hacked, News @ Nature (april 2007); Nature 447, 372 (2007)] has spurred some concern in the QKD community and among the general public by misinterpreting the implications of this work. The present article proves the existence of a stronger individual attack on QKD protocols with encrypted error correction, for which tight bounds are shown, and clarifies why the claims of the news feature incorrectly suggest a contradiction with the established “old-style” theory of BB84 individual attacks. The full implementation of a quantum cryptographic protocol includes a reconciliation and a privacy-amplification stage, whose choice alters in general both the maximum extractable secret and the optimal eavesdropping attack. The authors of [Phys. Rev. A 75, 042327 (2007)] are concerned only with the error-free part of the so-called sifted string, and do not consider faulty bits, which, in the version of their protocol, are discarded. When using the provably superior reconciliation approach of encrypted error correction (instead of error discard), the Slutsky-Brandt attack is no more optimal and does not “threaten” the security bound derived by Lütkenhaus [Phys. Rev. A 59, 3301 (1999)]. It is shown that the method of Slutsky and collaborators [Phys. Rev. A 57, 2383 (1998)] can be adapted to reconciliation with error correction, and that the optimal entangling probe can be explicitly found. Moreover, this attack fills Lütkenhaus bound, proving that it is tight (a fact which was not previously known).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  • M. Dušek, N. Lütkenhaus, M. Hendrych, in Quantum Cryptography, Progress in Optics, edited by E. Wolf (Elsevier, 2006), Vol. 49, Chap. 5

  • V. Scarani, H. Bechmann-Pasquinucci, N.J. Cerf, M. Dušek, N. Lütkenhaus, M. Peev, A framework for practical quantum cryptography, in preparation

  • C.H. Bennett, G. Brassard, in Proc. of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179 (1984)

  • A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • C.H. Bennett, G. Brassard, D.N. Mermin, Phys. Rev. Lett. 68, 557 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • U.M. Maurer, IEEE Trans. Inf. Theory 39 733 (1993)

    Google Scholar 

  • C.H. Bennett, G. Brassard, C. Crépeau, U.M. Maurer, IEEE Trans. Inf. Theory 41, 1915 (1995)

    Article  MATH  Google Scholar 

  • H. Inamori, N. Lütkenhaus, D. Mayers, Eur. Phys. J. D 41, 599 (2007)

    Article  ADS  Google Scholar 

  • D. Gottesman, H.-K. Lo, N. Lütkenhaus, J. Preskill, Quantum Inform. Comput. 4, 325 (2004)

    MathSciNet  Google Scholar 

  • T. Kim, I.S. genannt Wersborg, F.N.C. Wong, J.H. Shapiro, Phys. Rev. A 75, 042327 (2007)

    Article  ADS  Google Scholar 

  • J.H. Shapiro, F.N.C. Wong, Phys. Rev. A 73, 012315 (2006)

    Article  ADS  Google Scholar 

  • B.A. Slutsky, R. Rao, P.-C. Sun, Y. Fainman, Phys. Rev. A 57, 2383 (1998)

    Article  ADS  Google Scholar 

  • H.E. Brandt, Phys. Rev. A 71, 042312 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  • N. Lütkenhaus, Phys. Rev. A 59, 3301 (1999)

    Article  ADS  Google Scholar 

  • C.E. Shannon, Bell Syst. Tech. J. 27, 379 and 623 (1948).

    MathSciNet  Google Scholar 

  • C.A. Fuchs, A. Peres, Phys. Rev. A 53, 2038 (1996)

    Article  ADS  Google Scholar 

  • C.A. Fuchs, N. Gisin, R.B. Griffiths, C.-S. Niu, A. Peres, Phys. Rev. A 56, 1163 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  • N. Lütkenhaus, Generalised Measurements and Quantum Cryptography, Ph.D. thesis, University of Strathclyde, Glasgow (1996)

  • E. Waks, A. Zeevi, Y. Yamamoto, Phys. Rev. A 65, 052310 (2002)

    Article  ADS  Google Scholar 

  • W.F. Stinespring, Proc. Amer. Math. Soc. 6, 211 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  • M.A. Neumark, Izv. Akad. Nauk. SSSR, Ser. Mat. 4, 277 (1940)

    MathSciNet  Google Scholar 

  • D. Bruss, Phys. Rev. Lett. 81, 3018 (1998)

    Article  ADS  Google Scholar 

  • L.D. Landau, E.M. Lifshitz, Quantum Mechanics. Non-relativistic Theory, Course of Theoretical Physics, 3rd edn. (Butterworth Heinemann, Oxford, 1981), Vol. 3

  • N. Lütkenhaus, Phys. Rev. A 54, 97 (1996)

    Article  ADS  Google Scholar 

  • C.W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, 1976)

  • C.A. Fuchs, Distinguishability and Accessible Information in Quantum Theory, Ph.D. thesis, University of New Mexico (1996)

  • L.B. Levitin, in IEEE Intern. Symp. on Information Theory, Santa Monica, CA, USA (1981)

  • L.B. Levitin, in Quantum Communication and Measurement, edited by V.P. Belavkin, O. Hirota, R.L. Hudson (Plenum, New York, 1995) pp. 439–448. Proceedings of QCM94

  • C. Cachin, U.M. Maurer, J. Cryptol. 10, 97 (1997)

    Article  MATH  Google Scholar 

  • R. Jozsa, J. Mod. Opt. 41, 2315 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • C.A. Fuchs, C.M. Caves, Phys. Rev. Lett. 73, 3047 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • G. Brumfiel, Quantum cryptography is hacked, News @ Nature (april 2007). Online feature whose summary reads: “Simulation proves it's possible to eavesdrop on super-secure encrypted messages

  • G. Brumfiel, Nature 447, 372 (2007). The editor's summary starts with: “Quantum cryptography is 100% hack-proof. Or at least it was, until the hackers got cracking. Recent simulations suggest that it is only a matter of time before a quantum-mechanical method of eavesdropping on super-secure encrypted messages is developed...

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Herbauts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herbauts, I., Bettelli, S., Hübel, H. et al. On the optimality of individual entangling-probe attacks against BB84 quantum key distribution. Eur. Phys. J. D 46, 395–406 (2008). https://doi.org/10.1140/epjd/e2008-00002-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2008-00002-x

PACS.

Navigation