Skip to main content
Log in

Ab initio theory of helix↔coil phase transition

  • Molecular Physics and Chemical Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

In this paper, we suggest a theoretical method based on the statistical mechanics for treating the α-helix↔random coil transition in alanine polypeptides. We consider this process as a first-order phase transition and develop a theory which is free of model parameters and is based solely on fundamental physical principles. It describes essential thermodynamical properties of the system such as heat capacity, the phase transition temperature and others from the analysis of the polypeptide potential energy surface calculated as a function of two dihedral angles, responsible for the polypeptide twisting. The suggested theory is general and with some modification can be applied for the description of phase transitions in other complex molecular systems (e.g. proteins, DNA, nanotubes, atomic clusters, fullerenes).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • E. Shakhnovich, Chem. Rev. 106, 1559 (2006)

    Article  Google Scholar 

  • A. Finkelstein, O. Ptitsyn, Protein Physics. A Course of Lectures (Elsevier Books, Oxford, 2002)

  • J.E. Shea, C.L. Brooks, Ann. Rev. Phys. Chem. 52, 499 (2001)

    Article  ADS  Google Scholar 

  • N.V. Prabhu, K.A. Sharp, Ann. Rev. Phys. Chem. 56, 521 (2005)

    Article  ADS  Google Scholar 

  • A. Yakubovich, I. Solov'yov, A. Solov'yov, W. Greiner, Europhys. News 38, 10 (2007)

    Google Scholar 

  • A. Yakubovich, I. Solov'yov, A. Solov'yov, W. Greiner, Eur. Phys. J. D 40, 363 (2006)

    Article  ADS  Google Scholar 

  • B. Zimm, J. Bragg, J. Chem. Phys. 31, 526 (1959)

    Article  ADS  Google Scholar 

  • J. Gibbs, E. DiMarzio, J. Phys. Chem. 30, 271 (1959)

    Article  Google Scholar 

  • S. Lifson, A. Roig, J. Chem. Phys. 34, 1963 (1961)

    Article  ADS  Google Scholar 

  • J.A. Schellman, J. Phys. Chem. 62, 1485 (1958)

    Article  Google Scholar 

  • S. Lifson, J. Chem. Phys. 40, 3705 (1964)

    Article  ADS  Google Scholar 

  • D. Poland, H.A. Scheraga, J. Chem. Phys. 45, 1456 (1966)

    Article  ADS  Google Scholar 

  • D. Poland, H.A. Scheraga, J. Chem. Phys. 45, 2071 (1966)

    Article  ADS  Google Scholar 

  • N. Go, H.A. Scheraga, Macromolecules 9, 535 (1976)

    Article  ADS  Google Scholar 

  • N. Go, H.A. Scheraga, J. Chem. Phys. 51, 4751 (1969)

    Article  ADS  Google Scholar 

  • T. Ooi, M. Oobatake, Proc. Natl. Acad. Sci. USA 88, 2859 (1991)

    Article  ADS  Google Scholar 

  • J. Gomez, V.J. Hilser, D. Xie, E. Freire, Proteins: Struct. Func. Gen. 22, 404 (1995)

    Article  Google Scholar 

  • D.J. Tobias, C.L. Brooks, Biochemistry 30, 6059 (1991)

    Article  Google Scholar 

  • A.E. Garcia, K.Y. Sanbonmatsu, Proc. Natl. Acad. Sci. USA 99, 2781 (2002)

    ADS  Google Scholar 

  • H. Nymeyer, A.E. Garcia, Proc. Natl. Acad. Sci. USA 100, 13934 (2003)

    Article  ADS  Google Scholar 

  • A. Irbäck, F. Sjunnesson, Proteins: Struct. Func. Gen. 56, 110 (2004)

    Article  Google Scholar 

  • D. Shental-Bechor, S. Kirca, N. Ben-Tal, T. Haliloglu, Biophys. J. 88, 2391 (2005)

    Article  Google Scholar 

  • W. Scott, W. van Gunsteren, The GROMOS software package for biomolecular simulations, in Methods and Techniques in Computational Chemistry: METECC-95, edited by E. Clementi, G. Corongiu (STEF, Cagliari, Italy, 1995), pp. 397–434

  • W. Cornell, P. Cieplak, C. Bayly, I. Gould, K.M. Merz, D. Ferguson, D. Spellmeyer, T. Fox, J. Caldwell, P. Kollman, J. Am. Chem. Soc. 117, 5179 (1995)

    Article  Google Scholar 

  • A. MacKerell et al., J. Phys. Chem. B 102, 3586 (1998)

    Article  Google Scholar 

  • C. Chen, Y. Xiao, L. Zhang, Biophys. J. 88, 3276 (2005)

    Article  ADS  Google Scholar 

  • Y. Duan, P.A. Kollman, Science 282, 740 (1998)

    Article  ADS  Google Scholar 

  • A. Liwo, M. Khalili, H.A. Scheraga, Proc. Natl. Acad. Sci. USA 102, 2362 (2005)

    Article  ADS  Google Scholar 

  • F. Ding, N.V. Dokholyan, S.V. Buldyrev, H.E. Stanley, E.I. Shakhnovich, Biophys. J. 83, 3525 (2002)

    ADS  Google Scholar 

  • V.S. Pande, I. Baker, J. Chapman, S.P. Elmer, S.M. Larson, Y.M. Rhee, M.R. Shirts, C.D. Snow, E.J. Sorin, B. Zagrovic, Biopolymers 68, 91 (2002)

    Article  Google Scholar 

  • A. Irbäck, B. Samuelsson, F. Sjunnesson, S. Wallin, Biophys. J. 85, 1466 (2003)

    Google Scholar 

  • J. Kubelka, J. Hofrichter, W.A. Eaton, Curr. Opin. Struct. Biol. 14, 76 (2004)

    Article  Google Scholar 

  • E.A. Lipman, B. Schuler, O. Bakajin, W.A. Eaton, Science 301, 1233 (2003)

    Article  ADS  Google Scholar 

  • S. He, H.A. Scheraga, J. Chem. Phys. 108, 271 (1998)

    Article  ADS  Google Scholar 

  • S. He, H.A. Scheraga, J. Chem. Phys. 108, 287 (1998)

    Article  ADS  Google Scholar 

  • S. Fujita, E. Blaisten-Borojas, M. Torres, S.V. Godoy, J. Chem. Phys. 75, 3097 (1981)

    Article  ADS  Google Scholar 

  • A.E. Cárdenas, R. Elber, Biophys. J. 85, 2919 (2003)

    Article  Google Scholar 

  • J.M. Scholtz, S. Marqusee, R.L. Baldwin, E.J. York, J.M. Stewart, M. Santoro, D.W. Bolen, Proc. Natl. Acad. Sci. USA 88, 2854 (1991)

    Article  ADS  Google Scholar 

  • I.K. Lednev, A.S. Karnoup, M.C. Sparrow, S.A. Asher, J. Am. Chem. Soc. 123, 2388 (2001)

    Article  Google Scholar 

  • P.A. Thompson, W.A. Eaton, J. Hofrichter, Biochem. 36, 9200 (1997)

    Article  Google Scholar 

  • S. Williams, R.G. Thimothy, P. Causgrove, K.S. Fang, R.H. Callender, W.H. Woodruff, R.B. Dyer, Biochem. 35, 691 (1996)

    Article  Google Scholar 

  • R.A. Kromhout, B. Linder, J. Phys. Chem. B 105, 4987 (2001)

    Article  Google Scholar 

  • A. Chakrabartty, T. Kortemme, R.L. Baldwin, Prot. Sci. 3, 843 (1994)

    Article  Google Scholar 

  • M. Go, N. Go, H.A. Scheraga, J. Chem. Phys. 52, 2060 (1970)

    Article  ADS  Google Scholar 

  • H.A. Scheraga, J.A. Villa, D.R. Ripoll, Biophys. Chem. 101-102, 255 (2002)

    Google Scholar 

  • J. Wójcik, K.H. Altmann, H. Scheraga, Biopolymers 30, 121 (1990)

    Article  Google Scholar 

  • R.A. Scott, H.A. Scheraga, J. Chem. Phys. 45, 2091 (1966)

    Article  ADS  Google Scholar 

  • T. Ooi, R.A. Scott, G. Vanderkooi, H.A. Scheraga, J. Chem. Phys. 46, 4410 (1967)

    Article  ADS  Google Scholar 

  • L. Wang, T. O'Connell, A. Tropsha, J. Hermans, Proc. Natl. Acad. Sci. USA 92, 10924 (1995)

    Article  ADS  Google Scholar 

  • A. Yakubovich, I. Solov'yov, A.V. Solov'yov, W. Greiner, Eur. Phys. J. D, DOI: 10.1140/epjd/e2007-00327-x

  • J.B. Foresman, A. leen Frisch, Exploring Chemistry with Electronic Structure Methods (Pittsburgh, PA: Gaussian Inc, 1996)

  • A. Yakubovich, I. Solov'yov, A. Solov'yov, W. Greiner, Eur. Phys. J. D 39, 23 (2006)

    Article  ADS  Google Scholar 

  • A. Yakubovich, I. Solov'yov, A.V. Solov'yov, W. Greiner, Khimicheskaya Fizika (Chemical Physics) (in Russian) 25, 11 (2006)

    MathSciNet  Google Scholar 

  • I. Solov'yov, A. Yakubovich, A. Solov'yov, W. Greiner, Phys. Rev. E 73, 021916 (2006)

    Article  ADS  Google Scholar 

  • I. Solov'yov, A. Yakubovich, A.V. Solov'yov, W. Greiner, J. Exp. Theor. Phys. 102, 314 (2006); original Russian text published in Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki 129, 356 (2006)

    Article  ADS  Google Scholar 

  • A. Rubin, Biophysics: Theoretical Biophysics (University Press, Nauka, Moscow, 2004)

  • I. Solov'yov, A. Yakubovich, A. Solov'yov, W. Greiner, J. Exp. Theor. Phys. 103, 463 (2006); original Russian text published in Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki 130, 534 (2006)

    Article  ADS  Google Scholar 

  • L. Landau, E. Lifshitz, Statistical Physics (Pergamon Press, London-Paris, 1959)

  • S. Krimm, J. Bandekar, Biopolymers 19, 1 (1980)

    Article  Google Scholar 

  • M. Cubrovic, O. Obolensky, A. Solov'yov, in preparation (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Solov'yov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakubovich, A., Solov'yov, I., Solov'yov, A. et al. Ab initio theory of helix↔coil phase transition. Eur. Phys. J. D 46, 215–225 (2008). https://doi.org/10.1140/epjd/e2007-00328-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2007-00328-9

PACS.

Navigation