The European Physical Journal D

, Volume 46, Issue 2, pp 307–313

Slow beams of massive molecules

  • S. Deachapunya
  • P. J. Fagan
  • A. G. Major
  • E. Reiger
  • H. Ritsch
  • A. Stefanov
  • H. Ulbricht
  • M. Arndt
Laser Cooling and Quantum Gas

Abstract.

Slow beams of neutral molecules are of great interest for a wide range of applications, from cold chemistry through precision measurements to tests of the foundations of quantum mechanics. We report on the quantitative observation of thermal beams of perfluorinated macromolecules with masses up to 6000 amu, reaching velocities down to 11 m/s. Such slow, heavy and neutral molecular beams are of importance for a new class of experiments in matter-wave interferometry and we also discuss the requirements for further manipulation and cooling schemes with molecules in this unprecedented mass range.

PACS.

39.10.+j Atomic and molecular beam sources and techniques 33.80.Ps Optical cooling of molecules; trapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Laser Manipulation of Atoms and Ions, Course CXVIII, Proc. Int. School of Physics, edited by E. Arimondo, W.D. Phillips, F. Strumia (North-Holland, 1993) Google Scholar
  2. Interactions in ultracold gases, edited by M. Weidemüller, C. Zimmermann (Wiley-VCH, 2003) Google Scholar
  3. H.L. Bethlem, G. Berden, F.M.H. Crompvoets, A.J.A. van Roij, R.T. Jongma, G. Meijer, Nature 406, 491 (2000) CrossRefADSGoogle Scholar
  4. F.M.H. Crompvoets, H.B.R. Jongma, G. Meijer, Nature 411, 174 (2001) CrossRefADSGoogle Scholar
  5. T. Junglen, T. Rieger, S. Rangwala, P. Pinkse, G. Rempe, Eur. Phys. J. D 31, 365 (2004) CrossRefADSGoogle Scholar
  6. J.M. Doyle, B. Friedrich, J. Kim, D. Patterson, Phys. Rev. A 52, R2515 (1995) Google Scholar
  7. B.C. Sawyer, B. Lev, E.R. Hudson, B.K. Stuhl, M. Lara, J.L. Bohn, J. Ye, e-print arXiv:physics/0702146v1 Google Scholar
  8. M.R. Tarbutt, H.L. Bethlem, J.J. Hudson, V.L. Ryabov, V.L. Ryzhov, B.E. Sauer, G. Meijer, E.A. Hinds, Phys. Rev. Lett. 92, 173002 (2004) CrossRefADSGoogle Scholar
  9. R. Fulton, A.I. Bishop, P.F. Barker, Phys. Rev. Lett. 93, 243004 (2004) CrossRefADSGoogle Scholar
  10. M. Gupta, D. Herschbach, J. Phys. Chem. A 105, 1626 (2001) CrossRefGoogle Scholar
  11. E. Narevicius, A. Libson, M.F. Riedel, C.G. Parthey, I. Chavez, U. Even, M.G. Raizen, Phys. Rev. Lett. 98, 103201 (2007) CrossRefADSGoogle Scholar
  12. S.E. Maxwell, N. Brahms, R. deCarvalho, J. Helton, S. Nguyen, D. Patterson, D. Glenn, J. Petricka, D. DeMille, J.M. Doyle, Phys. Rev. Lett. 95, 173201 (2005) CrossRefADSGoogle Scholar
  13. M.S. Elioff, J.J. Valentini, D.W. Chandler, Science 302, 1940 (2003) CrossRefADSGoogle Scholar
  14. N.N. Liu, H. Loesch, Phys. Rev. Lett. 98, 103002 (2007) CrossRefADSGoogle Scholar
  15. P. Horak, G. Hechenblaikner, K.M. Gheri, H. Stecher, H. Ritsch, Phys. Rev. Lett. 79, 4974 (1997) CrossRefADSGoogle Scholar
  16. G. Morigi, P.W.H. Pinkse, M. Kowalewski, R. de Vivie-Riedle, e-print arXiv:quant-ph/0703157v1 Google Scholar
  17. M. Arndt, O. Nairz, J. Voss-Andreae, C. Keller, G.V. der Zouw, A. Zeilinger, Nature 401, 680 (1999) CrossRefADSGoogle Scholar
  18. O. Nairz, B. Brezger, M. Arndt, A. Zeilinger, Phys. Rev. Lett. 87, 160401 (2001) CrossRefADSGoogle Scholar
  19. B. Brezger, L. Hackermüller, S. Uttenthaler, J. Petschinka, M. Arndt, A. Zeilinger, Phys. Rev. Lett. 88, 100404 (2002) CrossRefADSGoogle Scholar
  20. K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida, T. Yoshida, T. Matsuo, Rap. Comm. Mass Spectr. 2, 151 (1988) CrossRefGoogle Scholar
  21. J. Grotemeyer, U. Boesl, K. Walter, E.W. Schlag, OMS 21, 645 (1986) Google Scholar
  22. J.B. Fenn, M. Mann, C.K. Meng, S.F. Wong, C.M. Whitehouse, Science 246, 64 (1989) CrossRefADSGoogle Scholar
  23. P.J. Fagan, P.J. Krusic, C.N. McEwen, J. Lazar, D. Holmes Parkert, N. Herron, E. Wasserman, Science 262, 404 (1993) CrossRefADSGoogle Scholar
  24. M.J. Frisch, G.W. Trucks, H.B. Hudson, G.E. Scuseria, GAUSSIAN03 (Revision A. 11.4), 2002 Google Scholar
  25. M. Barth, P.W. Harland, J.E. Hudson, C. Vallance, Phys. Chem. Chem. Phys. 3, 800 (2001) CrossRefGoogle Scholar
  26. Atomic and Molecular Beam Methods, edited by G. Scoles, D. Bassi, U. Buck, D. Lainé (University Press, Oxford, 1988) Google Scholar
  27. S. Gerlich, L. Hackermüller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfab, T. Savas, M. Müri, M. Mayor, M. Arndt, Nature Phys. 3, 711 (2007) CrossRefADSGoogle Scholar
  28. K. Hornberger, S. Uttenthaler, B. Brezger, L. Hackermüller, M. Arndt, A. Zeilinger, Phys. Rev. Lett. 90, 160401 (2003) CrossRefADSGoogle Scholar
  29. N. Gotsche, H. Ulbricht, M. Arndt, Laser Phys. 17, 583 (2007) CrossRefGoogle Scholar
  30. P. Maunz, T. Puppe, I. Schuster, N. Syassen, P.W.H. Pinkse, G. Rempe, Nature 428, 50 (2004) CrossRefADSGoogle Scholar
  31. D. Kruse, M. Ruder, J. Benhelm, C. von Cube, C. Zimmermann, P.W. Courteille, T. Elsässer, B. Nagorny, A. Hemmerich, Phys. Rev. A 67, 051802(R) (2003) CrossRefADSGoogle Scholar
  32. P. Domokos, P. Horak, H. Ritsch, J. Phys. B: At. Mol. Opt. Phys. 34, 187 (2001) CrossRefADSGoogle Scholar
  33. P. Domokos, H. Ritsch, Phys. Rev. Lett. 89, 253003 (2002) CrossRefADSGoogle Scholar
  34. J.K. Asboth, P. Domokos, H. Ritsch, A. Vukics, Phys. Rev. A 72, 053417 (2005) CrossRefADSGoogle Scholar
  35. M. Berninger, A. Stefanov, S. Deachapunya, M. Arndt, Phys. Rev. A 76, 013607 (2007) CrossRefADSGoogle Scholar
  36. S. Deachapunya, A. Stefanov, M. Berninger, H. Ulbricht, E. Reiger, N. Doltsinis, M. Arndt, J. Chem. Phys. 126, 164304 (2007) CrossRefADSGoogle Scholar
  37. N. Ramsey, Rev. Mod. Phys. 62, 541 (1990) CrossRefADSGoogle Scholar
  38. F. Stienkemeier, K.K. Lehmann, J. Phys. B 39, R127 (2006) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • S. Deachapunya
    • 1
    • 2
  • P. J. Fagan
    • 3
  • A. G. Major
    • 1
  • E. Reiger
    • 4
  • H. Ritsch
    • 5
  • A. Stefanov
    • 1
  • H. Ulbricht
    • 1
  • M. Arndt
    • 1
  1. 1.Faculty of Physics, University of ViennaViennaAustria
  2. 2.Department of PhysicsFaculty of Science, Burapha UniversityChonburiThailand
  3. 3.R&D The DuPont Company, PO Box 80328, Experimental StationWilmintonUSA
  4. 4.Kavli Institute of NanoscienceDelftThe Netherlands
  5. 5.Institute of Theoretical Physics, University of InnsbruckInnsbruckAustria

Personalised recommendations