Skip to main content

Advertisement

Log in

Dissociation channels of silver bromide cluster Ag2Br, silver cluster Ag3 and their ions studied by using alkali metal target

  • Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

Various dissociation channels of silver bromide cluster ion Ag2Br+ and silver cluster ion Ag3 + were observed in high-energy collisionally-activated dissociation (CAD) using a Cs target. The fragment patterns of the high-energy CAD were compared with those of the metastable dissociation and low-energy CAD. The difference in the fragment patterns between the high-energy CAD and the other dissociation methods was explained in terms of the internal energy distributions. The dissociation mechanisms of neutral silver bromide cluster Ag2Br and silver cluster Ag3 were also investigated by charge inversion mass spectrometry using the Cs target. While the fragment ions AgBr- and Ag2 - were dominantly observed in the charge inversion spectrum of Ag2Br+, the undissociated ion Ag3 - was observed as a predominant peak in the case of Ag3 +. The dissociation behavior of Ag2Br* can be explained on the basis of the calculated thermochemical data. Contrary to this, the predominant existence of the undissociated Ag3 - cannot be explained by the reported thermochemical data. The existence of undissociated Ag3 - suggests that the dissociation barrier is higher than the internal energy of Ag3 * (theoretical: 1.03 eV, experimental: 2.31 eV) estimated from the ionization potentials of Ag3 and Cs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J. Yoon, K.S. Kim, K.K. Baeck, J. Chem. Phys. 112, 9335 (2000), and references therein

    Article  ADS  Google Scholar 

  • S.W. Buckner, J.R. Gord, B.S. Freiser, J. Chem. Phys. 88, 3678 (1988)

    Article  ADS  Google Scholar 

  • J. Ho, K.M. Ervin, W.C. Lineberger, J. Chem. Phys. 93, 6987 (1990)

    Article  ADS  Google Scholar 

  • C. Jackschath, I. Rabin, W. Schulze, Z. Phys. D 22, 517 (1992)

    Article  ADS  Google Scholar 

  • H. Handschuh, C.-Y. Cha, P.S. Bechthold, G. Gantefor, W. Eberhardt, J. Chem. Phys. 102, 6406 (1995)

    Article  ADS  Google Scholar 

  • V.A. Spasov, T.H. Lee, J.P. Maberry, K.M. Ervin, J. Chem. Phys. 110, 5208 (1999)

    Article  ADS  Google Scholar 

  • S. Krückeberg, G. Dietrich, K. Lützenkirchen, L. Schweikhard, C. Walther, J. Ziegler, Int. J. Mass Spectom. Ion Process. 155, 141 (1996)

    Article  Google Scholar 

  • A. Fielicke, I. Rabin, G. Meijer, J. Phys. Chem. A 110, 8060 (2006)

    Article  Google Scholar 

  • S.P. Walch, C.W. Bauschlicher, S.R. Langhoff, J. Chem. Phys. 85, 5900 (1986)

    Article  ADS  Google Scholar 

  • S.P. Walch, J. Chem. Phys. 87, 6776 (1987)

    Article  ADS  Google Scholar 

  • C.W. Bauschlicher, S.R. Langhoff, H. Partridge, J. Chem. Phys. 91, 2412 (1989)

    Article  ADS  Google Scholar 

  • K. Balasubramanian, P.Y. Feng, Chem. Phys. Lett. 159, 452 (1989)

    Article  ADS  Google Scholar 

  • H. Partridge, C.W. Bauschlicher, S.R. Langhoff, Chem. Phys. Lett. 175, 531 (1990)

    Article  ADS  Google Scholar 

  • V. Bonacic-Koutecky, L. Cespiva, P. Fantucci, J. Koutecky, J. Chem. Phys. 98, 7981 (1993)

    Article  ADS  Google Scholar 

  • V. Bonacic-Koutecky, L. Cespiva, P. Fantucci, J. Pittner, J. Koutecky, J. Chem. Phys. 100, 490 (1994)

    Article  ADS  Google Scholar 

  • R. Santamaria, I.G. Kaplan, O. Novaro, Chem. Phys. Lett. 218, 395 (1994)

    Article  ADS  Google Scholar 

  • M.N. Huda, A.K. Ray, Eur. Phys. J. D 22, 217 (2003)

    ADS  Google Scholar 

  • Y. Wang, X.G. Gong, Eur. Phys. J. D 34, 19 (2005)

    Article  ADS  Google Scholar 

  • D.P. de Bruijn, J. Neuteboom, V. Sidis, J. Los, Chem. Phys. 85, 215 (1984); D.P. de Bruijn, J. Neuteboom, J. Los, Chem. Phys. 85, 233 (1984)

    Article  Google Scholar 

  • J.C. Brenot, H. Dunet, J.A. Fayeton, M. Barat, M. Winter, Phys. Rev. Lett. 77, 1246 (1996)

    Article  ADS  Google Scholar 

  • M. Barat, J.C. Brenot, H. Dunet, J.A. Fayeton, Y.J. Picard, Eur. Phys. J. D 1, 271 (1998)

    Article  ADS  Google Scholar 

  • J.A. Fayeton, M. Barat, J.C. Brenot, H. Dunet, Y.J. Picard, U. Saalmann, R. Schmidt, Phys. Rev. A 57, 1058 (1998)

    Article  ADS  Google Scholar 

  • M. Barat, J.C. Brenot, H. Dunet, J.A. Fayeton, Y.J. Picard, J. Chem. Phys. 110, 10758 (1999)

    Article  ADS  Google Scholar 

  • M. Barat, J.C. Brenot, H. Dunet, J.A. Fayeton, Y.J. Picard, D. Babikov, M. Sizun, Chem. Phys. Lett. 306, 233 (1999)

    Article  Google Scholar 

  • S. Hayakawa, Int. J. Mass Spectrom. Ion Process. 90, 251 (1989)

    Article  Google Scholar 

  • S. Wolf, G. Sommerer, S. Rutz, E. Schreiber, T. Leisner, L. Woste, R.S. Berry, Phys. Rev. Lett. 74, 4177 (1995)

    Article  ADS  Google Scholar 

  • D.W. Boo, Y. Ozaki, L.H. Andersen, W.C. Lineberger, J. Phys. Chem. A 101, 6688 (1997)

    Article  Google Scholar 

  • T. Leisner, S. Vajda, S. Wolf, L. Woste, R.S. Berry, J. Chem. Phys. 111, 1017 (1999)

    Article  ADS  Google Scholar 

  • H.O. Jeschke, M.E. Garcia, K.H. Bennemann, J. Phys. B: At. Mol. Opt. Phys. 29, 545 (1996)

    Article  ADS  Google Scholar 

  • H.O. Jeschke, M.E. Garcia, K.H. Bennemann, Phys. Rev. A 54, 4601 (1996)

    Article  ADS  Google Scholar 

  • M. Hartmann, J. Pittner, V. Bonacic-Koutecky, A. Heidenreich, J. Jortner, J. Chem. Phys. 108, 3096 (1998)

    Article  ADS  Google Scholar 

  • M. Hartmann, A. Heidenreich, J. Pittner, V. Bonacic-Koutecky, J. Jortner, J. Phys. Chem. A 102, 4069 (1998)

    Article  Google Scholar 

  • I. Andrianov, V. Bonacic-Koutecky, M. Hartmann, J. Manz, J. Pittner, K. Sundermann, Chem. Phys. Lett. 318, 256 (2000)

    Article  Google Scholar 

  • J.M. L'Hermite, F. Rabilloud, L. Marcou, P. Labastie, Eur. Phys. J. D 14, 323 (2001)

    Article  ADS  Google Scholar 

  • J.M. L'Hermite, F. Rabilloud, P. Labastie, F. Spiegelman, Eur. Phys. J. D 16, 77 (2001)

    Article  ADS  Google Scholar 

  • F. Rabilloud, F. Spiegelmann, J.L. Heully, J. Chem. Phys. 111, 8925 (1999)

    Article  ADS  Google Scholar 

  • F. Rabilloud, F. Spiegelman, J.M. L'Hermite, P. Labastie, J. Chem. Phys. 114, 289 (2001)

    Article  ADS  Google Scholar 

  • S. Hayakawa, K. Harada, K. Arakawa, N. Morishita, J. Chem. Phys. 112, 8432 (2000)

    Article  ADS  Google Scholar 

  • S. Hayakawa, Int. J. Mass Spectrom. 212, 229 (2001)

    Article  Google Scholar 

  • R.G. Cooks, in Collision Spectroscopy, edited by R.G. Cooks (Prenum, New York, 1978), Chap. 7

  • S. Hayakawa, H. Endoh, K. Arakawa, N. Morishita, T. Sugiura, Int. J. Mass Spectom. Ion Process. 151, 89 (1995)

    Article  Google Scholar 

  • S. Hayakawa, J. Mass Spectrom. 39, 111 (2004)

    Article  Google Scholar 

  • S. Hayakawa, A. Kitaguchi, S. Kameoka, M. Toyoda, T. Ichihara, J. Chem. Phys. 124, 224320 (2006)

    Article  Google Scholar 

  • P. Sharpe, C.J. Cassady, Chem. Phys. Lett. 191, 111 (1992)

    Article  ADS  Google Scholar 

  • V.H. Wysocki, H.I. Kenttamaa, R.G. Cooks, Int. J. Mass Spectrom. Ion Process. 75, 181 (1987)

    Article  Google Scholar 

  • K.L. Schey, H.I. Kenttämaa, V.H. Wysocki, R. Graham Cooks, Int. J. Mass Spectom. Ion Process. 90, 71 (1989)

    Article  Google Scholar 

  • V.H. Wysocki, H.I. Kenttamaa, R.G. Cooks, J. Phys. Chem. 92, 6465 (1988)

    Article  Google Scholar 

  • S.R. Horning, M. Vincenti, R.G. Cooks, J. Am. Chem. Soc. 112, 119 (1990)

    Article  Google Scholar 

  • S. Hayakawa, K. Harada, N. Watanabe, K. Arakawa, N. Morishita, Int. J. Mass Spectrom. 202, A1 (2000)

  • S. Hayakawa, K. Kadomura, M. Kimura, C.M. Dutta, Phys. Rev. A 70, 022708 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  • S. Hayakawa, N. Terazawa, T. Sugiura, J. Phys. B 23, 4539 (1990)

    Article  ADS  Google Scholar 

  • S. Hayakawa, N. Terazawa, T. Sugiura, J. Mass Spectrom. Soc. Jpn 41, 225 (1993)

    Google Scholar 

  • S. Hayakawa, M. Takahashi, K. Arakawa, N. Morishita, J. Chem. Phys. 110, 2745 (1999)

    Article  ADS  Google Scholar 

  • S. Hayakawa, K. Tomozawa, T. Takeuchi, K. Arakawa, N. Morishita, Phys. Chem. Chem. Phys. 5, 2386 (2003)

    Article  Google Scholar 

  • S. Hayakawa, N. Kabuki, Eur. Phys. J. D 38, 163 (2006)

    Article  ADS  Google Scholar 

  • S. Hayakawa, M. Hashimoto, H. Matsubara, F. Turecek, J. Am. Chem. Soc. 129, 7936 (2007)

    Article  Google Scholar 

  • S. Hayakawa, K. Taguchi, R. Kotani, K. Arakawa, N. Morishita, J. Mass Spectrom. Soc. Jpn 49, 219 (2001)

    Google Scholar 

  • S. Hayakawa, H. Matsubara, Y. Kawamura, K. Iwamoto, Int. J. Mass Spectrom. 262, 220 (2007)

    Article  Google Scholar 

  • S. Hayakawa, Y. Kawamura, Y. Takahashi, Int. J. Mass Spectrom. 246, 56 (2005)

    Article  Google Scholar 

  • R.G. Cooks, J.H. Beynon, R.M. Caprioli, G.R. Lester, Metastable Ions (Elsevier, Amsterdam, 1973)

  • K.P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hayakawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagao, H., Awazu, K., Hayakawa, S. et al. Dissociation channels of silver bromide cluster Ag2Br, silver cluster Ag3 and their ions studied by using alkali metal target. Eur. Phys. J. D 45, 279–287 (2007). https://doi.org/10.1140/epjd/e2007-00265-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2007-00265-7

PACS.

Navigation