Skip to main content
Log in

Transition energies of atomic lawrencium

  • Atomic and Ionic Level Structure
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

Transition energies of the superheavy element lawrencium, including the ionization potential, excitation energies and electron affinities, are calculated by the intermediate Hamiltonian coupled cluster method. A large basis set (37s31p26d21f16g11h6i) is used, as well as an extensive P space (6s5p4d2f1g). The outer 43 electrons are correlated. Accuracy is monitored by applying the same approach to lutetium, the lighter homologue of Lr, and comparing with experimentally known energies. QED corrections are included. The main goal is to predict excitation energies, in anticipation of planned spectroscopy of Lr. The ground state of Lr is \(7s^27p\ ^2{\rm P}_{1/2}\), unlike the \(5d6s^2\ ^2{\rm D}_{3/2}\) of Lu. Predicted Lr excitations with large transition moments in the prime range for the planned experiment, 20 000–30 000 cm-1, are 7p→8s at 20 100 cm-1 and 7p→7d at 28 100 cm-1. The average absolute error of 20 excitation energies of Lu is 423 cm -1, and the error limits for Lr are put at 700 cm-1. The two electron affinities measured recently for Lu are reproduced within 55 cm-1, and a third bound state of Lu- is predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • The Chemistry of Superheavy Elements, edited by M. Schädel (Kluwer Academic Publishers, Dordrecht, 2003)

  • V. Pershina, D.C. Hoffman, in Theoretical Chemistry and Physics of Heavy, Superheavy Elements (Kluwer Academic Publishers, Dordrecht, 2003), p. 55

  • M. Sewtz, H. Backe, A. Dretzke, G. Kube, W. Lauth, P. Schwamb, K. Eberhardt, C. Grüning, P. Thörle, N. Trautmann, P. Kunz, J. Lassen, G. Passler, C.Z. Dong, S. Fritzsche, R.G. Haire, Phys. Rev. Lett. 90, 163002 (2003)

    Article  ADS  Google Scholar 

  • Backe et al., Eur. Phys. J. D 45, 99 (2007)

    ADS  Google Scholar 

  • For a recent review see R.J. Bartlett, in Modern Electronic Structure Theory, edited by D.R. Yarkony (World scientific, Singapore, 1995), Vol. 2, p. 1047

  • For a review on multireference CC methods, particularly the FSCC approach, see D. Mukherjee, S. Pal, Adv. Quantum Chem. 20, 292 (1989); for a review on non-relativistic FSCC applications see U. Kaldor, Theor. Chim. Acta 80, 427 (1991); for a review on relativistic FSCC applications see U. Kaldor, E. Eliav, Adv. Quantum Chem. 31, 313 (1998)

    Google Scholar 

  • E. Eliav, U. Kaldor, Y. Ishikawa, Phys. Rev. A 51, 225 (1995)

    Article  ADS  Google Scholar 

  • Z. Cai, V. Meiser Umar, C. Froese Fischer, Phys. Rev. Lett. 68, 297 (1992)

    Article  ADS  Google Scholar 

  • D.L. Carpenter, A.M. Covington, J.S. Thompson, Phys. Rev. A 61, 042501 (2000)

    Article  ADS  Google Scholar 

  • A. Ferran, F. Moto, J. Novoa, Chem. Phys. 166, 77 (1992)

    Article  Google Scholar 

  • W.P. Wijesundera, Phys. Rev. A 55, 1785 (1997)

    Article  ADS  Google Scholar 

  • E. Eliav, Y. Ishikawa, P. Pyykkö, U. Kaldor, Phys. Rev. A 56, 4532 (1997)

    Article  ADS  Google Scholar 

  • A. Landau, E. Eliav, U. Kaldor, Chem. Phys. Lett. 313, 399 (1999)

    Article  ADS  Google Scholar 

  • A. Landau, E. Eliav, U. Kaldor, Adv. Quantum Chem. 39, 171 (2001)

    Article  Google Scholar 

  • A. Landau, E. Eliav, Y. Ishikawa, U. Kaldor, J. Chem. Phys. 121, 6634 (2004)

    Article  ADS  Google Scholar 

  • U. Kaldor, E. Eliav, A. Landau, in Fundamental World of Quantum Chemistry, edited by E.J. Brandas, E.S. Kryachko (Kluwer, 2004), Vol. III, pp. 365–406

  • A. Landau, E. Eliav, Y. Ishikawa, U. Kaldor, J. Chem. Phys. 113, 9905 (2000)

    Article  ADS  Google Scholar 

  • A. Landau, E. Eliav, Y. Ishikawa, U. Kaldor, J. Chem. Phys. 115, 6862 (2001)

    Article  ADS  Google Scholar 

  • A. Landau, E. Eliav, Y. Ishikawa, U. Kaldor, J. Chem. Phys. 114, 2977 (2001)

    Article  ADS  Google Scholar 

  • A. Landau, E. Eliav, Y. Ishikawa, U. Kaldor, J. Chem. Phys. 115, 2389 (2001)

    Article  ADS  Google Scholar 

  • E. Eliav, A. Landau, Y. Ishikawa, U. Kaldor, J. Phys. B 35, 1693 (2002)

    Article  ADS  Google Scholar 

  • E. Eliav, M.J. Vilkas, Y. Ishikawa, U. Kaldor, Chem. Phys. 311, 163 (2005)

    Article  ADS  Google Scholar 

  • E. Eliav, M.J. Vilkas, Y. Ishikawa, U. Kaldor, J. Chem. Phys. 122, 224113 (2005)

    Article  ADS  Google Scholar 

  • W.C. Martin, R. Zalubas, L. Hagan, Atomic Energy Levels — The Rare-Earth Elements, US Natl. Bur. Stand. Ref. Data Ser., US Natl. Bur. Stand. Circ. No. NBS 60 (US GPO, Washington, DC, 1978); http://physics.nist.gov/PhysRefData/Handbook/

  • V.T. Davis, J.S. Thompson, J. Phys. B 34, L433 (2001)

  • J.-P. Desclaux, B. Fricke, J. Phys. 41, 943 (1980)

    Google Scholar 

  • Y. Zou, C.F. Fischer, Phys. Rev. Lett. 88, 183001 (2002)

    Article  Google Scholar 

  • S.H. Vosko, J.A. Chevary, J. Phys. B 26, 873 (1993)

    Article  ADS  Google Scholar 

  • W. Liu, W. Küchle, M. Dolg, Phys. Rev. A 58, 1103 (1998)

    Article  ADS  Google Scholar 

  • E. Eliav, U. Kaldor, Y. Ishikawa, Phys. Rev. A 52, 291 (1995)

    Article  ADS  Google Scholar 

  • J.-P. Malrieu, Ph. Durand, J.-P. Daudey, J. Phys. A 18, 809 (1985)

    Article  ADS  Google Scholar 

  • P. Indelicato, O. Gorceix, J.P. Desclaux, J. Phys. B 20, 651 (1987)

    Article  ADS  Google Scholar 

  • Y.-K. Kim, in Atomic Processes in Plasmas, edited by Y.-K. Kim, R.C. Elton, AIP Conf. Proc. 206 (AIP, New York, 1990), p. 19

  • M.J. Vilkas, Y. Ishikawa, Phys. Rev. A 68, 012503 (2003); M.J. Vilkas, Y. Ishikawa, J. Phys. B 37, 1803 (2004)

    Article  ADS  Google Scholar 

  • P.J. Mohr, Phys. Rev. A 46, 4421 (1992)

    Article  ADS  Google Scholar 

  • G.L. Malli, A.B.F. Da Silva, Y. Ishikawa, Phys. Rev. A 47, 143 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Kaldor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borschevsky, A., Eliav, E., Vilkas, M. et al. Transition energies of atomic lawrencium. Eur. Phys. J. D 45, 115–119 (2007). https://doi.org/10.1140/epjd/e2007-00130-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2007-00130-9

PACS.

Navigation