Skip to main content
Log in

Electron impact ionization of thymine clusters embedded in superfluid helium droplets

  • Helium Clusters and Spectroscopy
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

Embedding molecules in helium clusters has become a powerful technique for the preparation of cold targets for spectroscopy experiments, as well as for the assembly of complex, fragile molecular species. We have recently developed a helium cluster source and a pick-up cell to produce neutral beams of doped helium droplets, to be used as targets in studies on electron collisions with molecules of biological relevance. In the present work we present the results of a series of experiments on electron-impact ionization of helium clusters doped with thymine and 1-methylthymine, where several interesting phenomena were observed, i.e., (i) electron impact ionization of molecular clusters inside the helium droplets leads predominantly to protonated clusters; (ii) the appearance energies are close to the ionization threshold of the helium atom but ionization efficiency curves in addition extend down by several eV; (iii) ionized molecular clusters can undergo metastable decay via the loss of one neutral monomer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • F. Martin, P.D. Burrow, Z. Cai, P. Cloutier, D. Hunting, L. Sanche, Phys. Rev. Lett. 93, 068101 (2004)

    Article  ADS  Google Scholar 

  • B. Boudaiffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Science 287, 1658 (2000)

    Article  ADS  Google Scholar 

  • P. Mozejko, L. Sanche, Radiat. Envirom. Biophys. 42, 201 (2003)

    Article  Google Scholar 

  • S. Denifl, S. Matejcik, B. Gstir, G. Hanel, M. Probst, P. Scheier, T.D. Märk, J. Chem. Phys. 118, 4107 (2003)

    Article  ADS  Google Scholar 

  • G. Hanel, B. Gstir, S. Denifl, P. Scheier, M. Probst, B. Farizon, M. Farizon, E. Illenberger, T.D. Märk, Phys. Rev. Lett. 90, 188104 (2003)

    Article  ADS  Google Scholar 

  • S. Denifl, S. Ptasinska, M. Cingel, S. Matejcik, P. Scheier, T.D. Märk, Chem. Phys. Lett. 377, 74 (2003)

    Article  Google Scholar 

  • S. Ptasinska, S. Denifl, V. Grill, T.D. Märk, P. Scheier, S. Gohlke, M.A. Huels, E. Illenberger, Angew. Chem. Int. Ed. 44, 1647 (2005)

    Article  Google Scholar 

  • S. Ptasinska, P. Candori, S. Denifl, S. Yoon, V. Grill, P. Scheier, T.D. Märk, Chem. Phys. Lett. 409, 270 (2005)

    Article  Google Scholar 

  • S. Ptasinska, S. Denifl, V. Grill, T.D. Märk, E. Illenberger, P. Scheier, Phys. Rev. Lett. 95, 093201 (2005)

    Article  ADS  Google Scholar 

  • S. Ptasinska, S. Denifl, B. Mroz, M. Probst, V. Grill, E. Illenberger, P. Scheier, T.D. Märk, J. Chem. Phys. 123, 124302 (2005)

    Article  ADS  Google Scholar 

  • S. Ptasinska, S. Denifl, P. Scheier, E. Illenberger, T.D. Märk, Angew. Chem. Int. Ed. 44, 6941 (2005)

    Article  Google Scholar 

  • S. Ptasinska, S. Denifl, S. Gohlke, P. Scheier, E. Illenberger, T.D. Märk, Angew. Chem. Int. Ed. 45, 1893 (2006)

    Article  Google Scholar 

  • J.Wu, S.A. McLuckey, Int. J. Mass Spectrom. 237, 197 (2004)

    Article  Google Scholar 

  • E. Nir, K. Kleinermanns, M.S. de Vries, Nature 408, 949 (2000)

    Article  ADS  Google Scholar 

  • C. Plützer, I. Hünig, K. Kleinermanns, E. Nir, M.S. de Vries, Chem. Phys. Chem. 4, 838 (2003)

    Google Scholar 

  • J.P. Toennies, A.F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004)

    Article  Google Scholar 

  • J.A. Northby, J. Chem. Phys. 115, 10065 (2001); C. Callegari, K.K. Lehmann, R. Schmied, G. Scoles, J. Chem. Phys. 115, 10090 (2001); F. Stienkemeier, A.F. Vilesov, J. Chem. Phys. 115, 10119 (2001)

    Article  ADS  Google Scholar 

  • M.Y. Choi, R.E. Miller, Phys. Chem. Chem. Phys. 7, 3565 (2005)

    Article  Google Scholar 

  • M. Fárník, J.P. Toennies, J. Chem. Phys. 122, 014307 (2005)

    Article  Google Scholar 

  • B.E. Callicoatt, K. Förde, T. Ruchti, L.F. Jung, K.C. Janda, N. Halberstadt, J. Chem. Phys. 108, 9371 (1998)

    Article  ADS  Google Scholar 

  • A.A. Scheidemann, V.V. Kresin, H. Hess, J. Chem. Phys. 107, 2839 (1997)

    Article  ADS  Google Scholar 

  • W.K. Lewis, R.J. Bemish, R.E. Miller, J. Chem. Phys. 123, 141103 (2005)

    Article  Google Scholar 

  • W.K. Lewis, C.M. Lindsay, R.J. Bemish, R.E. Miller, J. Am. Chem. Soc. 127, 7235 (2005)

    Article  Google Scholar 

  • S. Yang, S.M. Brereton, M.D. Wheeler, A.M. Ellis, Phys. Chem. Chem. Phys. 7, 4082 (2005)

    Article  Google Scholar 

  • S. Yang, S.M. Brereton, M.D. Wheeler, A.M. Ellis, J. Phys. Chem. A 110, 1791 (2006)

    Article  Google Scholar 

  • S. Denifl, M. Stano, A. Stamatovic, P. Scheier, T.D. Märk, J. Chem. Phys. 124, 054320 (2006)

    Article  Google Scholar 

  • S. Feil, K. Gluch, S. Denifl, F. Zappa, O. Echt, P. Scheier, T.D. Märk, Int. J. Mass. Spec. 252, 166 (2006)

    Article  Google Scholar 

  • E.L. Knuth, J. Chem. Phys. 107, 9125 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Zappa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zappa, F., Denifl, S., Mähr, I. et al. Electron impact ionization of thymine clusters embedded in superfluid helium droplets. Eur. Phys. J. D 43, 117–120 (2007). https://doi.org/10.1140/epjd/e2007-00093-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2007-00093-9

PACS.

Navigation