Skip to main content
Log in

Towards parallel computing: representation of a linear finite state digital logic machine by a molecular relaxation process

  • Molecular Physics and Chemical Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

A chemical system displaced not far from equilibrium is shown to offer a physical realization of a linear sequential digital logic machine. The requirement from the system is that its state is described by giving the current values of the concentration of different chemical species. The time evolution is therefore described by a classical master equation. The Landau-Teller process of vibrational relaxation of diatomic molecules in a buffer gas is used as a concrete example where each vibrational level is taken to be a distinct species. The probabilities (= fractional concentrations) of the species of the physicochemical system are transcribed as words composed of letters from a finite alphabet. The essential difference between the finite precision of the logic machine and the seemingly unbounded number of significant figures that could be used to specify a concentration is emphasized. The transcription between the two is made by using modular arithmetic that is, is the arithmetic of congruence. A digital machine corresponding to the vibrational relaxation process is constructed explicitly for the simple case of three vibrational levels. In this exploratory effort we use words of only one letter. Even this is sufficient to achieve an exponentially large number of memory states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • I. Oppenheim, K.E. Shuler, G.H. Weiss, Stochastic Processes in Chemical Physics: The Master Equation (The MIT Press, Cambridge, 1977)

  • E.W. Montroll, K.E. Shuler, Adv. Chem. Phys. 1, 361 (1958)

    Google Scholar 

  • E.W. Montroll, K.E. Shuler, J. Chem. Phys. 26, 454 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  • Z. Kohavi, Switching and Finite Automata Theory (Tata McGraw-Hill, New Delhi, 1999)

  • A.P. deSilva, Nature Mat. 4, 15 (2005); X.F. Guo, D.Q. Zhang, G.X. Zhang, D.B. Zhu, J. Phys. Chem. B 108, 11942 (2004); D. Margulies, G. Melman, C.E. Felder, R. Arad-Yellin, A. Shanzer, J. Am. Chem. Soc. 126, 15400 (2004); F. Remacle, S. Speiser, R.D. Levine, J. Phys. Chem. A 105, 5589 (2001); D. Steinitz, F. Remacle, R.D. Levine, Chem. Phys. Chem. 3, 43 (2002); F. Remacle, I. Willner, R.D. Levine, Chem. Phys. Chem. 6, 1 (2005); M.N. Stojanovic, D. Stefanovic, J. Am. Chem. Soc. 125, 6673 (2003); J. Andreasson, G. Kodis, Y. Terazono, P.A. Liddell, S. Bandyopadhyay, R.H. Mitchell, T.A. Moore, A.L. Moore, D. Gust, J. Am. Chem. Soc. 126, 15926 (2004); F.M. Raymo, Adv. Mat. 14, 401 (2002); V. Balzani, A. Credi, M. Venturi, Chem. Phys. Chem. 4, 49 (2003); C. Joachim, J.K. Gimzewski, A. Aviram, Nature 408, 541 (2000)

    Article  ADS  Google Scholar 

  • A. Hjelmfelt, E.D. Weinberger, J. Ross, Proc. Natl. Acad. Sci. (USA) 88, 10983 (1991); A. Hjelmfelt, E.D. Weinberger, J. Ross, Proc. Natl. Acad. Sci. (USA) 89, 383 (1992); A. Hjelmfelt, J. Ross, Proc. Natl. Acad. Sci. (USA) 89, 388 (1992)

    Article  MATH  ADS  Google Scholar 

  • R.D. Levine, Molecular Reaction Dynamics (Cambridge University Press, Cambridge, 2005)

  • A.E. Johnson, N.E. Levinger, P.F. Barbara, J. Phys. Chem. 96, 7841 (1992); D.A.V. Kliner, J.C. Alfano, P.F. Barbara, J. Chem. Phys. 98, 5375 (1993); T. Kuhne, P. Vohringer, J. Chem. Phys. 105, 10788 (1996)

    Article  Google Scholar 

  • A.V. Davis, R. Wester, A.E. Bragg, D.M. Neumark, J. Chem. Phys. 117, 4282 (2002)

    Article  ADS  Google Scholar 

  • C.C. Rankin, J.C. Light, J. Chem. Phys. 46, 1305 (1967); S.R. Leone, R.J. McDonald, C.B. Moore, J. Chem. Phys. 63, 4735 (1975)

    Article  ADS  Google Scholar 

  • C.B. Moore, in Fluorescence, edited by G.G. Guilbault (Dekker, New York, 1967), p. 133; H.-L. Chen, C.B. Moore, J. Chem. Phys. 54, 4072 (1971)

    Article  ADS  Google Scholar 

  • F. Remacle, R.D. Levine, Proc. Natl. Acad. Sci. USA 101, 12091 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • T.L. Booth, Sequential Machines and Automata Theory (Wiley, New York, 1968)

  • I. Oppenheim, K.E. Shuler, G.H. Weiss, J. Chem. Phys. 50, 460 (1969); I.N. Krieger, P.J. Gans, J. Chem. Phys. 32, 247 (1960)

    Article  ADS  Google Scholar 

  • R.I. Cukier, K.E. Shuler, J. Chem. Phys. 57, 302 (1972)

    Article  ADS  Google Scholar 

  • A. Gill, Introduction to the Theory of Finite-State Machines (McGraw-Hill, New York, 1962)

  • M.A. Harrison, Lectures on Linear Sequential Machines (Academic Press, New York, 1969)

  • E.W. Weisstein, Concise Encyclopedia of Mathematics, 2nd edn. (Chapman and Hall, London, 2002); E.W. Weisstein http://mathworld.wolfram.com/Congruence.html (2006)

  • A. Ekert, P. Hayden, H. Inamori, e-print arXiv:quant-ph/0011013 (2000)

  • S. Wolfram, The Mathematica Book, 5th edn. (Wolfram Media, 2003)

  • M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000); D. Deutsch, Proc. R. Soc. Lond. A 425, 73 (1989); D. Deutsch, R. Jozsa, Proc. R. Soc. Lond. A 439, 553 (1992); A. Barenco, C.H. Bennett, R. Cleve, D.P. Divincenzo, N. Margolus, P. Shor, T. Sleator, J.A. Smolin, H. Weinfurter, Phys. Rev. A 52, 3457 (1995)

    Article  Google Scholar 

  • D.J. Nesbitt, R.W. Field, J. Phys. Chem. 100, 12735 (1996); M. Gruebele, P.G. Wolynes, Acc. Chem. Res. 37, 261 (2004)

    Article  Google Scholar 

  • S. Hammes-Schiffer, Acc. Chem. Res. 34, 273 (2001); R.I. Cukier, D.G. Nocera, Ann. Rev.Phys. Chem. 49, 337 (1998); F.M. Raymo, M. Tomasulo, Chem. Soc. Rev. 34, 327 (2005)

    Article  Google Scholar 

  • A. Gill, Linear Sequential Circuits (McGraw Hill, New York, 1966)

  • J. Zheng, K. Kwak, J. Asbury, X. Chen, I. Piletic, M.D. Fayer, Science 309, 1338 (2005); Y.S. Kim, R.M. Hochstrasser, PNAS 102, 11185 (2005)

    Article  ADS  Google Scholar 

  • C. Lung, R.E. Wyatt, J. Chem. Phys. 99, 2261 (1993); R.B. Lehoucq, S.K. Gray, D.H. Zhang, J.C. Light, Comp. Phys. Com. 109, 15 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Remacle, F., Levine, R. Towards parallel computing: representation of a linear finite state digital logic machine by a molecular relaxation process. Eur. Phys. J. D 42, 49–59 (2007). https://doi.org/10.1140/epjd/e2006-00277-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2006-00277-9

PACS.

Navigation