Skip to main content

Nonlinear lensing mechanisms in a cloud of cold atoms

Abstract.

We present an experimental study of nonlinear lensing of near-resonant light by a cloud of laser-cooled rubidium atoms, specifically aimed at understanding the role of the interaction time between the light and the atomic vapor. We identify four different nonlinear mechanisms, each associated with a different time constant: electronic nonlinearity, Zeeman optical pumping, hyperfine optical pumping and radiation pressure. Our observations can be quite accurately reproduced using a simple rate equation model which allows for a straightforward discussion of the various effects. The results are important for planning more refined experiments on transverse nonlinear optics and self-organization in samples of cold atoms.

This is a preview of subscription content, access via your institution.

References

  1. M. Hercher, J. Opt. Soc. Am. 54, 563 (1964)

    Google Scholar 

  2. P.L. Kelley, Phys. Rev. Lett. 15, 1005 (1965)

    Article  ADS  Google Scholar 

  3. J.E. Bjorkholm, A. Ashkin, Phys. Rev. Lett. 32, 129 (1974)

    Article  ADS  Google Scholar 

  4. Y.R. Shen, Prog. Quantum Electron. 4, 2 (1975)

    Article  ADS  Google Scholar 

  5. J. Marburger, Prog. Quantum Electron. 4, 35 (1975)

    Article  ADS  Google Scholar 

  6. R.W. Hellwarth, J. Opt. Soc. Am. 67, 1 (1977)

    ADS  Google Scholar 

  7. A. Yariv, D.M. Pepper, Opt. Lett. 1, 16 (1977)

    ADS  Article  Google Scholar 

  8. D.M. Bloom, G.C. Bjorklund, Appl. Phys. Lett. 31, 592 (1977)

    Article  ADS  Google Scholar 

  9. R.G. Brewer, Phys. Rev. Lett. 19, 8 (1967)

    Article  ADS  Google Scholar 

  10. F. Shimizu, Phys. Rev. Lett. 19, 1097 (1967)

    Article  ADS  Google Scholar 

  11. A.C. Cheung, D.M. Rank, R.Y. Chiao, C.H. Townes, Phys. Rev. Lett. 20, 786 (1968)

    Article  ADS  Google Scholar 

  12. R.S. Benning, V. Wong, D.M. Marino, D.L. Aronstein, R.W. Boyd, C.R. Stroud Jr, S. Lukishova, D.J. Gauthier, Phys. Rev. Lett. 88, 113901 (2002)

    Article  ADS  Google Scholar 

  13. A. Gahl, J. Seipenbusch, A. Aumann, M. Möller, W. Lange, Phys. Rev. A 50, R917 (1994)

  14. T. Ackemann, Y. Logvin, A. Heuer, W. Lange, Phys. Rev. Lett. 75, 3450 (1995)

    Article  ADS  Google Scholar 

  15. A.V. Mamaev, M. Saffman, A.A. Zozulya, Phys. Rev. Lett. 76, 2262 (1996)

    Article  ADS  Google Scholar 

  16. T. Ackemann, W. Lange, Appl. Phys. B 72, 21 (2001)

    ADS  Google Scholar 

  17. P. Mandel, M. Tlidi, J. Opt. B: Quantum Semiclass. Opt. 6, R60 (2004)

  18. L.A. Lugiato, M. Brambilla, A. Gatti, Adv. A. Mol. Opt. Phys. 40, 229 (1999)

    Google Scholar 

  19. F.T. Arecchi, S. Boccaletti, P.L. Ramazza, Phys. Rep. 318, 1 (1999)

    Article  ADS  Google Scholar 

  20. T. Chanelière, D. Wilkowski, Y. Bidel, R. Kaiser, C. Miniatura, Phys. Rev. E 70, 036602 (2004); S. Balik, P. Kulatunga, C.I. Sukenik, M.D. Havey, D.V. Kupriyanov, I.M. Sokolov, J. Mod. Opt. 52, 2269 (2005)

    Article  ADS  Google Scholar 

  21. H. Cao, Waves in Random Media 13, R1 (2003); S.C. Rand, C. Soukoulis, D.S. Wiersma, J. Opt. Soc. Am. B 21, 98 (2004)

    Google Scholar 

  22. B.A. Malomed, D. Mihalache, F. Wise, L. Torner, J. Opt. B: Quantum Semiclass. Opt. 7, R53 (2005)

  23. T. Ackemann, A. Aumann, E. Große Westhoff, Yu. A. Logvin, W. Lange, J. Opt. B: Quantum Semiclass. Opt. 3, S124 (2001)

  24. M. Saffman, Phys. Rev. Lett. 81, 65 (1998)

    Article  ADS  Google Scholar 

  25. G.A. Muradyan, Y. Wang, W. Williams, M. Saffman, Absolute instability and pattern formation in cold atomic vapors, in Nonlinear Guided Waves and Their Applications (Dresden, 2005), Paper ThB29

  26. G. Labeyrie, T. Ackemann, B. Klappauf, M. Pesch, G.-L. Lippi, R. Kaiser Eur. Phys. J. D 22, 473 (2003)

    ADS  Google Scholar 

  27. Y. Wang, M. Saffman, Phys. Rev. A 70, 013801 (2004)

    Article  ADS  Google Scholar 

  28. Y. Wang, M. Saffman, Opt. Commun. 241, 513 (2004)

    Article  ADS  Google Scholar 

  29. G.L. Gattobigio, F. Michaud, J. Javaloyes, J.W.R. Tabosa, R. Kaiser, Phys. Rev. A 74, 043407 (2006)

    Article  ADS  Google Scholar 

  30. D. Kruse, C. von Cube, C. Zimmermann, Ph.W. Courteille, Phys. Rev. Lett. 91, 183601 (2003)

    Article  ADS  Google Scholar 

  31. J.E. Bjorkholm, A. Ashkin, Phys. Rev. Lett. 32, 129 (1974)

    Article  ADS  Google Scholar 

  32. M. Sheik-Bahae, A. Said, E.W.V. Stryland, Opt. Lett. 14, 955 (1989)

    ADS  Google Scholar 

  33. G. Labeyrie, C.A. Müller, D.S. Wiersma, C. Miniatura, R. Kaiser, J. Opt. B: Quantum Semiclassical Opt. 2, 672 (2000)

    Article  ADS  Google Scholar 

  34. T. Ackemann, T. Scholz, Ch. Vorgerd, J. Nalik, L.M. Hoffer, G.L. Lippi, Opt. Commun. 147, 411 (1998)

    Article  ADS  Google Scholar 

  35. A time constant of \(20~\mu\)s is estimated for the conditions of reference Saffman

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Kaiser.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Labeyrie, G., Gattobigio, G., Chanelière, T. et al. Nonlinear lensing mechanisms in a cloud of cold atoms. Eur. Phys. J. D 41, 337–348 (2007). https://doi.org/10.1140/epjd/e2006-00234-8

Download citation

PACS.

  • 42.65.Jx Beam trapping, self-focusing and defocusing; self-phase modulation
  • 32.80.Pj Optical cooling of atoms; trapping
  • 42.65.Sf Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics