A comparative nearside-farside analysis of the He–N2 + and He–N2 inelastic collisions

  • G. Guillon
  • T. StoecklinEmail author
Molecular Physics and Chemical Physics


A comparative study of the inelastic scattering of 14N2 + and 14N2 in collision with 3He atoms is presented. The unrestricted nearside-farside (NF) method proposed by Connor [J. Chem. Phys. 104, 2297 (1995)] is applied to analyse the Close Coupling rotationally state selected angular distributions for four kinetic energies. These four energies illustrate different regimes of the dynamics. The relationships between the structures of the calculated differential cross-sections (DCS) and the different regions of the potential energy surfaces involved which can be extracted from semi classical models are here easily obtained from a simple reading of the (NF) figures. At the higher energy far-off the wells (1000 cm-1) the shape of the DCS are quite similar for the two systems and their nearside-farside components also, showing that the inelastic process is controlled by the short range repulsive part of the potential which is essentially the same for these two collisions. When the energy is decreased the differences between the two wells associated with the He–N2 + and He–N2 complexes are responsible for the differences between the DCS for the two systems. The farside component associated with the well become more and more prominent for the elastic scattering while inelastic scattering remains controlled by the repulsive core in a large angular interval. The nearside farside analysis gives also a new picture of a resonance which is regarded as an equilibrium between the repulsive and the attractive parts of the potential.


34.50.-s Scattering of atoms and molecules 34.50.Ez Rotational and vibrational energy transfer 34.50.Pi State-to-state scattering analyses 03.65.Sq Semiclassical theories and applications 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. P. McCabe, J.N.L. Connor, J. Chem. Phys. 104, 2297 (1995) CrossRefADSGoogle Scholar
  2. F.L. Schöier, F.F.S. van der Tak, E.F. van Dishoeck, J.H. Black, A&A 432, 369 (2005); M.L. Dubernet, Database: CrossRefADSGoogle Scholar
  3. J. Doyle, B. Friedrich, R.V. Krems, F. Masnou-Seeuws, Eur. Phys. J. D 31, 149 (2004) CrossRefADSGoogle Scholar
  4. R.V. Krems, Int. Rev. Phys. Chem. 24, 99 (2005) CrossRefGoogle Scholar
  5. P. McCabe, J.N.L. Connor, D. Sokolowski, J. Chem. Phys. 108, 5695 (1998) CrossRefADSGoogle Scholar
  6. T.W.J. Whiteley, C. Noli, J.N.L. Connor, J. Phys. Chem. 105, 2792 (2001) Google Scholar
  7. P. McCabe, J.N.L. Connor, D. Sokolowski, J. Chem. Phys. 114, 5194 (2000) CrossRefADSGoogle Scholar
  8. R.C. Fuller, Phys. Rev. C 12, 1561 (1975) CrossRefADSGoogle Scholar
  9. P.J. Hatchell, Phys. Rev. C 40, 27 (1989) CrossRefADSGoogle Scholar
  10. T. Stoecklin, A. Voronin, J.C. Rayez, Phys. Rev. A 66, 42703 (2002) CrossRefADSGoogle Scholar
  11. T. Stoecklin, A. Voronin, Phys. Rev. A 72, 042714 (2005) CrossRefADSGoogle Scholar
  12. M. Jacob, G. Wick, Ann. Phys. (N.Y.) 7, 404 (1959) zbMATHMathSciNetCrossRefADSGoogle Scholar
  13. D. Sokolowski, J.N.L. Connor, Chem. Phys. Lett. 305, 238 (1999) CrossRefGoogle Scholar
  14. F.J. Aoiz, L. Banares, V.J. Herrero, B. Martinez-Haya, M. Menedez, P. Quintana, I. Tanarro, E. Verdasco, Chem. Phys. Lett. 367, 500 (2003) CrossRefGoogle Scholar
  15. A.S. Dickinson, W.K. Liu, Mol. Phys. 93, 789 (1998) CrossRefGoogle Scholar
  16. W.R. Rodwell, L.T. Sim Fai Lam, R.O. Walts, Mol. Phys. 44, 225 (1981) CrossRefGoogle Scholar
  17. A.M. Sapse, J. Chem. Phys. 78, 5733 (1983) CrossRefADSGoogle Scholar
  18. M. Raimondi, Mol. Phys. 53, 161 (1984) CrossRefADSGoogle Scholar
  19. D.E. Woon, T.H. Dunning Jr, J. Chem. Phys. 98, 1358 (1993) CrossRefADSGoogle Scholar
  20. T.S. Ho, H. Rabitz, J. Chem. Phys. 104, 2584 (1996) CrossRefADSGoogle Scholar
  21. C. Reese, T. Stoecklin, A. Voronin, J.C. Rayez, A&A 430, 1139 (2005) CrossRefADSGoogle Scholar
  22. T. Stoecklin, A. Voronin, J.C. Rayez, Phys. Rev. A 68, 032716 (2003) CrossRefADSGoogle Scholar
  23. T. Stoecklin, A. Voronin, J.C. Rayez, Chem. Phys. 298, 175 (2004) CrossRefGoogle Scholar
  24. R.W. Anderson, J. Chem. Phys. 77, 4431 (1982); E.B. Stechel, R.B. Walker, J.C. Light, J. Chem. Phys. 69, 3518 (1978) CrossRefADSGoogle Scholar
  25. J.M. Launay, J. Phys. B 10, 3665 (1977) CrossRefADSGoogle Scholar
  26. T. Colbert, W.H. Miller, J. Chem. Phys. 96, 1982 (1992) CrossRefADSGoogle Scholar
  27. F.A. Gianturco, A. Palma, J. Chem. Phys. 83, 1049 (1985) CrossRefADSGoogle Scholar
  28. J.N.L. Connor, D. Farrely, D.C. Mackay, J. Chem. Phys. 74, 3278 (1981); K.E. Thylwe, J.N.L. Connor, J. Chem. Phys. 91, 1668 (1989) MathSciNetCrossRefADSGoogle Scholar
  29. R.B. Bernstein, J.T. Muckerman, Adv. Chem. Phys. 12, 389 (1967) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Université de Bordeaux 1, UMR5803-CNRSTalence CedexFrance

Personalised recommendations