Skip to main content
Log in

Hyperthermal cluster-surface scattering

Comparison of fragmentation, energy redistribution, and sticking in atomic and molecular clusters

  • Clusters and Nanostructures
  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

Using molecular-dynamics simulation, we study the processes occurring after impact of clusters on a rigid wall. Comparing the impact of model clusters consisting of 13 atoms, or of 13 diatomic molecules with varied bond strength, the systematics in the results of the collision process are investigated. Four regimes of impact-induced cluster fragmentation are identified: intact reflection, shattering into large fragments, complete fragmentation, and molecule dissociation. The effect of the number of degrees of freedom activated in the collision on the translational and internal energies of the reflected fragments is discussed in detail. As a rule, with increasing number of degrees of freedom which can be activated in the collision, the translational energy sinks. On the other hand, for weak intramolecular bonding, intramolecular vibrations are easily excited at small impact energies, reducing the resulting translational energy. The presence of even a very weak attractive well epsilonw at the surface has a major influence on the sticking behavior of the clusters — and hence also on the absolute reflected energies — even at impact energies E0 ≫ epsilonw.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • C.L. Cleveland, U. Landman, Science 257, 355 (1992)

    ADS  Google Scholar 

  • B. Gergen, H. Nienhaus, W.H. Weinberg, E.W. McFarland, Science 294, 2521 (2001)

    Article  ADS  Google Scholar 

  • W. Harbich, in Metal Clusters at Surfaces: Structure, Quantum Properties, Physical Chemistry (Springer, Berlin, 2000), Springer Series in Cluster Physics, p. 107

  • H.-P. Cheng, U. Landman, Science 260, 1304 (1993)

    ADS  Google Scholar 

  • I. Yamada, J. Matsuo, Z. Insepov, T. Aoki, T. Seki, N. Toyoda, Nucl. Instrum. Meth. B 164-165, 944 (2000)

    Google Scholar 

  • W. Christen, U. Even, J. Phys. Chem. A 102, 9420 (1998)

    Article  Google Scholar 

  • F.O. Goodman, H.Y. Wachman, Dynamics of gas-surface scattering (Academic Press, New York, 1976)

  • C.T. Rettner, M.N.R. Ashfold, Dynamics of gas-surface interactions (Royal Society of Chemistry, Cambridge, 1991)

  • R.M. Logan, R.E. Stickney, J. Chem. Phys. 44, 195 (1966)

    Article  ADS  Google Scholar 

  • R.M. Logan, J.C. Keck, J. Chem. Phys. 49, 860 (1968)

    Article  ADS  Google Scholar 

  • H. Gades, H.M. Urbassek, Appl. Phys. A 61, 39 (1995)

    ADS  Google Scholar 

  • A. Tomsic, P.U. Andersson, N. Markovic, J.B.C. Pettersson, J. Chem. Phys. 119, 4916 (2003)

    Article  ADS  Google Scholar 

  • A. Tomsic, H. Schröder, K.-L. Kompa, C.R. Gebhardt, J. Chem. Phys. 119, 6314 (2003)

    Article  ADS  Google Scholar 

  • W. Christen, U. Even, T. Raz, R.D. Levine, J. Chem. Phys. 108, 10262 (1998)

    Article  ADS  Google Scholar 

  • G.-Q. Xu, S.L. Bernasek, J.C. Tully, J. Chem. Phys. 88, 3376 (1988)

    Article  ADS  Google Scholar 

  • J.N. Beauregard, H.R. Mayne, J. Chem. Phys. 99, 6667 (1993)

    Article  ADS  Google Scholar 

  • E. Hendell, U. Even, T. Raz, R.D. Levine, Phys. Rev. Lett. 75, 2670 (1995)

    Article  ADS  Google Scholar 

  • T. Raz, U. Even, R.D. Levine, J. Chem. Phys. 103, 5394 (1995)

    Article  ADS  Google Scholar 

  • W. Christen, U. Even, T. Raz, R.D. Levine, Int. J. Mass Spectrom. Ion Proc. 174, 35 (1998)

    Article  ADS  Google Scholar 

  • I. Schek, T. Raz, R.D. Levine, J. Jortner, J. Chem. Phys. 101, 8596 (1994)

    Article  ADS  Google Scholar 

  • W. Christen, U. Even, Eur. Phys. J. D 9, 29 (1999)

    Article  ADS  Google Scholar 

  • T. Raz, R.D. Levine, J. Chem. Phys. 105, 8097 (1996)

    Article  ADS  Google Scholar 

  • G. Herzberg, Molecular Spectra and Molecular Structure, (van Nostrand, Toronto, 1950), Vol. 1

  • A. Lofthus, P.H. Krupenie, J. Phys. Chem. Ref. Data 6, 113 (1977)

    Article  ADS  Google Scholar 

  • T.A. Scott, Phys. Rep. 27, 69 (1976)

    Article  ADS  Google Scholar 

  • C.S. Murthy, K. Singer, M.I. Klein, I.R. McDonald, Molec. Phys. 41, 1387 (1980)

    Article  ADS  Google Scholar 

  • M.R. Hoare, P. Pal, Adv. Phys. 20, 161 (1971)

    Article  ADS  Google Scholar 

  • H. Gades, H.M. Urbassek, Phys. Rev. B 51, 14559 (1995)

    Article  ADS  Google Scholar 

  • S.D. Stoddard, J. Comput. Phys. 27, 291 (1978)

    Article  ADS  Google Scholar 

  • R.D. Levine, R.B. Bernstein, Molecular reaction dynamics and chemical reactivity (Oxford University Press, Osford, 1987)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Urbassek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmermann, S., Urbassek, H. Hyperthermal cluster-surface scattering. Eur. Phys. J. D 39, 423–432 (2006). https://doi.org/10.1140/epjd/e2006-00118-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2006-00118-y

PACS.

Navigation