Skip to main content
Log in

Morphological differences between Bi, Ag and Sb nano-particles and how they affect the percolation of current through nano-particle networks

  • Clusters and Nanostructures
  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

Nano-particles of Bi, Ag and Sb have been produced in an inert gas aggregation source and deposited between lithographically defined electrical contacts on SiN. The morphology of these films have been examined by atomic force microscopy and scanning electron microscopy. The Bi nano-particles stick well to the SiN substrate and take on a flattened dome shape. The Ag nano-particles also stick well to the SiN surface; however they retain a more spherical shape. Whereas, many of the Sb nano-particles bounce off the SiN surface with only a small fraction of the Sb nano-particles aggregating at defects resulting in a non-random distribution of the clusters. These nano-scale differences in the film morphology influence the viability of applying percolation theory to in situ macroscopic measurements of the film conductivity, during the deposition process. For Bi and Ag nano-particles the increase in conductivity follows a power law. The power law exponent, t, was found to be 1.27 ±0.13 and 1.40 ±0.14, for Bi and Ag respectively, in agreement with theoretical predictions of t ≈1.3 for 2D random continuum percolation networks. Sb cluster networks do not follow this model and due to the majority of the Sb clusters bouncing off the surface. Differences in the current onset times and final conductance values of the films are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • K. Meiwes-Broer, in Metal Clusters at Surfaces (Springer, Berlin, 2000)

  • P. Milani, S. Ianotta, in Cluster Beam Synthesis of Nanostructured Materials (Springer, Berlin, 1999)

  • F. Favier, E.C. Walter, M.P. Zach, T. Benter, R.M. Penner, Science 293, 2227 (2001)

    Article  ADS  Google Scholar 

  • S.J. Tans, A.R.M. Verschueren, C. Dekker, Nature 393, 49 (1998)

    Article  ADS  Google Scholar 

  • D. Stauffer, in Introduction to Percolation Theory (Taylor and Francis, London, 1985)

  • H.E. Stanley, Rev. Mod. Phys. 71, S358 (1999)

  • J. Schmelzer Jr, S.A. Brown, A. Wurl, M. Hyslop, Phys. Rev. Lett. 88, 226802-1 (2002)

    Article  Google Scholar 

  • B.J. Last, D.J. Thouless, Phys. Rev. Lett. 27, 1719 (1971)

    Article  ADS  Google Scholar 

  • J. Quintanilla, S. Torquato, R.M. Ziff, J. Phys. A: Math. Gen. 33, L399 (2000)

  • S. Feng, B.I. Halperin, P.N. Sen, Phys. Rev. B 35, 197 (1987)

    Article  ADS  Google Scholar 

  • B.I. Halperin, S. Feng, P.N. Sen, Phys. Rev. Lett. 54, 2391 (1985)

    Article  ADS  Google Scholar 

  • I. Balberg, Phys. Rev. B 57, 13351 (1998)

    Article  ADS  Google Scholar 

  • A. Okazaki, K. Maruyama, K. Okumura, Y. Hasegawa, S. Miyazima, Phys. Rev. E 54, 3389 (1996)

    Article  ADS  Google Scholar 

  • A. Okazaki, K. Horibe, K. Maruyama, S. Miyazima, Phys. Rev. E 61, 6215 (2000)

    Article  ADS  Google Scholar 

  • M.A. Dubson, J.C. Garland, Phys. Rev. B 32, 7621 (1985)

    Article  ADS  Google Scholar 

  • S. Yamamuro, K. Sumiyama, T. Hihara, K. Suzuki, J. Phys. Soc. Jap. 68, 28 (1999)

    Article  Google Scholar 

  • P. Melinon, P. Jensen, Jian Xiong Hu, A. Hoareau, B. Cabaud, M. Treilleux, D. Guillot, Phys. Rev. B 44, 12562 (1991)

    Article  ADS  Google Scholar 

  • S. Heun, J. Bange, R. Schad, M. Henzler, J. Phys.: Condens. Matter, 5 2913 (1993)

    Google Scholar 

  • S. Takeda, X. Tong, S. Ino, S. Hasegawa, Surf. Sci. 415, 264 (1998)

    Article  Google Scholar 

  • A. Wurl, M. Hyslop, S.A. Brown, B.D. Hall, R. Monot, Eur. Phys. J. D 16, 205 (2001)

    Article  ADS  Google Scholar 

  • M. Schulze, S. Gourley, S.A. Brown, A. Dunbar, J. Partridge, R.J. Blaikie, Eur. Phys. J. D 24, 291 (2003)

    Article  ADS  Google Scholar 

  • C. Binns, Surf. Sci. Rep. 44, 1 (2001)

    Article  Google Scholar 

  • L.N. Smith, C.J. Lobb, Phys. Rev. B 20, 3653 (1979)

    Article  ADS  Google Scholar 

  • W. Harbich, B. von Issendorf, private communications

  • J.G. Partridge, S. Scott, A.D.F. Dunbar, M. Schulze, S.A. Brown, A. Wurl, R.J. Blaikie, IEEE Trans. Nanotech. 3, 61 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D.F. Dunbar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunbar, A., Partridge, J., Schulze, M. et al. Morphological differences between Bi, Ag and Sb nano-particles and how they affect the percolation of current through nano-particle networks. Eur. Phys. J. D 39, 415–422 (2006). https://doi.org/10.1140/epjd/e2006-00113-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2006-00113-4

PACS.

Navigation