Skip to main content
Log in

Abstract.

In this work we investigate the influence of low frequency turbulence on Doppler spectral line shapes in magnetized plasmas. Low frequency refers here to fluctuations whose typical time scale is much larger than those characterizing the atomic processes, such as radiative decay, collisions and charge exchange. This ordering is in particular relevant for drift wave turbulence, ubiquitous in edge plasmas of fusion devices. Turbulent fluctuations are found to affect line shapes through both the spatial and time averages introduced by the measurement process. The profile is expressed in terms of the fluid fields describing the plasma. Assuming the spectrometer acquisition time to be much larger than the turbulent time scale, an ordering generally fulfilled in experiments, allows to develop a statistical formalism. We proceed by successively investigating the effects of density, fluid velocity and temperature fluctuations on the Doppler profile of a spectral line emitted by a charge exchange population of neutrals. Line shapes, and especially line wings are found to be affected by ion temperature or fluid velocity fluctuations, and can in some cases exhibit a power-law behavior. These effects are shown to be measurable with existing techniques, and their interpretation in each particular case would rely on already existing tools. From a fundamental point of view, this study gives some insights in the appearance of non-Boltzmann statistics, such as Lévy statistics, when dealing with averaged experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J.A. Krommes, Phys. Rep. 360, 1 (2002)

    Article  ADS  Google Scholar 

  • X. Garbet, Plasma Phys. Control. Fusion 43, A251 (2001)

  • W. Horton, Rev. Mod. Phys. 71, 735 (1999)

    Article  ADS  Google Scholar 

  • H.R. Griem, Spectral Line Broadening by Plasmas (Academic Press New York and London, 1974)

  • E. Oks, Plasma Spectroscopy (Springer-Verlag, Berlin Heidelberg, 1995)

  • H. Capes, D. Voslamber, Phys. Rev. A 15, 1751 (1977)

    Article  ADS  Google Scholar 

  • C. Deutsch, G. Bekefi, Phys. Rev. A 14, 854 (1976)

    Article  ADS  Google Scholar 

  • M. Baranger, B. Mozer, Phys. Rev. 123, 25 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  • H. Kubo, H. Takenaga, T. Sugie, S. Higashijima, S. Suzuki, A. Sakasai, N. Hosogane, Plasma Phys. Control. Fusion 40, 1115 (1998)

    Article  ADS  Google Scholar 

  • D.P. Stotler, C.H. Skinner, R.V. Budny, A.T. Ramsey, D.N. Ruzic, R.B. Turkot Jr, Phys. Plasmas 3, 4084 (1996)

    Article  ADS  Google Scholar 

  • J.D. Hey, C.C. Chu, E. Hintz, J. Phys. B: At. Mol. Opt. Phys. 32, 3555 (1999)

    Article  ADS  Google Scholar 

  • M. Koubiti, Y. Marandet, A. Escarguel, H. Capes, L. Godbert-Mouret, R. Stamm, C. De Michelis, R. Guirlet, M. Mattioli, Plasma Phys. Control. Fusion 44, 261 (2002)

    Article  ADS  Google Scholar 

  • N. Bretz, Rev. Sci. Instrum. 68, 2927 (1997)

    Article  ADS  Google Scholar 

  • H.T. Evensen, R.J. Fonck, S.F. Paul, G. Rewoldt, S.D. Scott, W.M. Tang, M.C. Zarnstorff, Nucl. Fusion 38, 237 (1998)

    Article  ADS  Google Scholar 

  • R. Jha et al., Phys. Plasmas 10, 699 (2003)

    Article  ADS  Google Scholar 

  • G.M. Zaslavsky, M. Edelman, H. Weitzner, B. Carreras, G. McKee, R. Bravenec, R. Fonck, Phys. Plasmas 7, 3691 (2000)

    Article  ADS  Google Scholar 

  • M. Jakubowski, R.J. Fonck, G.R. Mckee, Phys. Rev. Lett. 89, 265003 (2002)

    Article  ADS  Google Scholar 

  • Y. Marandet, P. Genesio, M. Koubiti, L. Godbert-Mouret, B. Felts, R. Stamm, H. Capes, R. Guirlet, Nuc. Fus. 44, S118 (2004)

  • Y. Marandet, H. Capes, L. Godbert-Mouret, M. Koubiti, R. Stamm, Europhys. Lett. 69, 531 (2005)

    Article  ADS  Google Scholar 

  • Y. Marandet, H. Capes, L.Godbert-Mouret, R. Guirlet, M. Koubiti, R. Stamm, Commun. Non Lin. Sci. Num Simul. 8, 469 (2003)

    Article  MATH  Google Scholar 

  • S.I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)

    ADS  Google Scholar 

  • F. Hinton, R. Hazeltine, Rev. Mod. Phys. 48, 239 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  • R.K. Janev, D. Reiter, U. Samm, Collision Processes in Low-Temperature Hydrogen Plasmas, Jül-Bericht 4105, Forschungszentrum Jülich, 2003

  • F.B. Rosmej, H. Capes, M. Koubiti, V.S. Lisitsa, Y. Marandet, A. Meigs, R. Stamm, Europhys. Conf. Abstr. 27A, 1.176 (2003)

    Google Scholar 

  • S.G. Rautian, I.I. Sobel'man, Sov. Phys. Usp. 9, 701 (1967)

    Article  ADS  Google Scholar 

  • B.H. Bransden, C.J. Joachain, Physic of atoms and molecules (Longman Scientific and Technical, 1983)

  • Y. Marandet, H. Capes, L. Godbert-Mouret, M. Koubiti, R. Stamm, R. Guirlet, Spectral Line Shapes, edited by C.A. Back, Vol. 12, AIP, Volume 645, page 60, 2002

  • U. Frisch, Turbulence (Cambridge University Press, 1995)

  • A. Das, P. Kaw, Phys. Plasmas 2, 1497 (1995)

    Article  ADS  Google Scholar 

  • S.B. Pope, Turbulent Flows (Cambridge University Press, 2000)

  • H. Chen, S. Chen, R.H. Kraichnan, Phys. Rev. Lett. 63, 2657 (1989)

    Article  ADS  Google Scholar 

  • Y.G. Sinai, V. Yakhot, Phys. Rev. Lett. 63, 1962 (1989)

    Article  ADS  Google Scholar 

  • R.T. Pierrehumbert, Chaos 10, 61 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • D.R. Fereday, P.H. Haynes, Phys. Fluids 16, 4359 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  • C. Tsallis, Chaos 6, 539 (1995)

    MATH  MathSciNet  Google Scholar 

  • H.R. Griem, Principles of Plasma Spectroscopy, Cambridge Monographs on Plasma Physics (Cambridge University Press, 1997)

  • A. Unsöld, Physik des Sternatmosphären (Springer-Verlag, Berlin, 1955)

  • N.A. Iganov, R.A. Sunyaev, Astron. Lett. 29, 791 (2003)

    Article  ADS  Google Scholar 

  • M.D. Ding et al., Astron. Astrophys. 348, L29 (1999)

  • Ying Liu, Ming-De Ding, Chin. J. Astron. Astrophys. 2, 277 (2002)

    Article  MATH  ADS  Google Scholar 

  • I. Koponen, Phys. Rev. E 52, 1197 (1995)

    Article  ADS  Google Scholar 

  • W. Paul, J. Baschnagel, Stochastic processes, From Physics to finance (Springer-Verlag, 1999)

  • Charge-Transfer Devices in Spectroscopy, edited by J.V. Sweedler, K.L. Ratzlaff, M.B. Denton (VCH, 1994)

  • P.M. Epperson, M.B. Denton, Anal. Chem. 61, 1513 (1989)

    Article  Google Scholar 

  • R. Guirlet et al., Plasma Phys. Control. Fusion 43, 177 (2001)

    Article  ADS  Google Scholar 

  • D. Reiter, M. Baelmans, P. Börner, Fus. Sci. Technol. 47, 172 (2005)

    Google Scholar 

  • J.D. Hey, C.C. Chu, Ph. Mertens, J. Phys. B:At. Mol. Opt. Phys. 38, 3517 (2005)

    Article  ADS  Google Scholar 

  • S. Brezinsek et al., Fus. Sci. Technol. 47, 209 (2005)

    Google Scholar 

  • A.J.H. Donné et al. Fus. Sci. Technol. 47, 220 (2005)

  • S. Jespersen, R. Metzler, H.C. Fogedby, Phys. Rev. E 59, 2736 (1999)

    Article  ADS  Google Scholar 

  • A.V. Chechkin, V. Yu. Gonchar, Phys. Plasmas 9, 78 (2002)

    Article  ADS  Google Scholar 

  • C. Beck, Phys. Rev. Lett. 87, 180601 (2001).

    Article  MathSciNet  ADS  Google Scholar 

  • P. Resibois, M. DeLeener, Classical Kinetic Theory of fluids (Wiley-Interscience, 1977)

  • G. Wilk, Z. Wlodarczyk, Phys. Rev. Lett. 84, 2770 (2000)

    Article  ADS  Google Scholar 

  • C. Beck, E.D.G. Cohen, Physica A 322, 267 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Marandet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marandet, Y., Capes, H., Godbert-Mouret, L. et al. Spectral line shapes modeling in turbulent plasmas. Eur. Phys. J. D 39, 247–260 (2006). https://doi.org/10.1140/epjd/e2006-00105-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2006-00105-4

PACS.

Navigation