Skip to main content
Log in

A density functional theoretic study of novel silicon-carbon fullerene-like nanostructures: Si40C20, Si60C20, Si36C24, and Si60C24

  • Clusters and Nanostructures
  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

Fullerene-like silicon nanostructures with twenty and twenty-four carbon atoms on the surface of the Si60 cage by substitution, as well as inside the cage at various orientations have been studied within the generalized gradient approximation to density functional theory. Full geometry optimizations have been performed without any symmetry constraints using the Gaussian 03 suite of programs and the LANL2DZ basis set. Thus, for the silicon atom, the Hay-Wadt pseudopotential with the associated basis set is used for the core electrons and the valence electrons, respectively. For the carbon atom, the Dunning/Huzinaga double zeta basis set is employed. Electronic and geometric properties of these nanostructures are presented and discussed in detail. Optimized silicon-carbon fullerene like nanostructures are found to have increased stability compared to the bare Si60 cage and the stability depends on the number and the orientation of carbon atoms, as well as on the nature of silicon-carbon and carbon-carbon bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atomic and Molecular Clusters, edited by E.R. Bernstein (Elsevier, New York, 1990)

  • Physics and Chemistry of Finite Systems – From Clusters to Crystals, Proceedings of the NATO Advanced Research Workshop, edited by P. Jena, S.N. Khanna, B.K. Rao (Kluwer Academic Publishing, 1991); Theory of Atomic and Molecular Clusters (Springer-Verlag, Berlin, 1999)

  • Clusters of Atoms and Molecules, edited by H. Haberland (Springer-Verlag, Berlin, 1994)

  • U. Naher, S. Bjornholm, S. Frauendorf, F. Garcias, C. Guet, Phys. Rep. 285, 245 (1997)

    Article  ADS  Google Scholar 

  • S. Sugano, H. Koizumi, Microcluster Physics (Springer-Verlag, New York, 1998)

  • Theory of Atomic and Molecular Clusters: With a Glimpse at Experiments, edited by J. Jellinek, R.S. Berry, J. Jortner (Springer-Verlag, New York, 1999)

  • S. Bjornholm, J. Borggreen, Philos. Mag. B 79, 1321 (1999)

    ADS  Google Scholar 

  • Roy L. Johnston, R.L. Johnston, Atomic and Molecular Clusters (Routledge Publishing, New York, 2002)

  • Encyclopedia of Nanoscience and Nanotechnology, edited by H.S. Nalwa (American Scientific Publishers, California, 2004)

  • F. Baletto, R. Ferrando, Rev. Mod. Phys. 77, 371 (2005)

    Article  ADS  Google Scholar 

  • N.E. Frick, An Ab Initio Study of Alkali – C 60 Complexes, M.S. thesis, The University of Texas at Arlington, May 2002 and references therein; N.E. Frick, A.S. Hira, A.K. Ray, in preparation

  • R.-H. Xie, G.W. Bryant, J. Zhao, V.H. Smith Jr, A.D. Carlo, A. Pecchia, Phys. Rev. Lett. 90, 206602 (2003); R.–H. Xie, G.W. Bryant, G. Sun, T. Kar, Z. Chen, V.H. Smith Jr, Y. Araki, N. Tagmatarchis, H. Shinohara, O. Ito, Phys. Rev. B 69, 201403 (2004)

    Article  ADS  Google Scholar 

  • H. Hiura, T. Miyazaki, T. Kanayama, Phys. Rev. Lett. 86, 1733 (2001); T. Miyazaki, H. Hiura, T. Kanayama, Phys. Rev. B 66, 121403 (R) (2002)

    Article  ADS  Google Scholar 

  • A. Szabo, N.S. Ostlund, Modern Quantum Chemistry (Macmillan, New York, 1982)

  • W.J. Hehre, P.v.R. Schleyer, J.A. Pople, Ab Initio Molecular Orbital Theory (Wiley, New York, 1982)

  • R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989)

  • K.-M. Ho, A.A. Shvartsburg, B. Pan, Z.-Y. Lu, C.-Z. Wang, J. G. Wacker, J.L. Fye, M.F. Jarrold, Nature 392, 582 (1998)

    Article  ADS  Google Scholar 

  • G.V. Helden, M.T. Hsu, N. Gotts, M.T. Bowers, J. Phys. Chem. 97, 8182 (1993)

    Article  Google Scholar 

  • M.F. Jarrold, Nature 407, 26 (2000); J. C. Grossman, L. Mitas, K. Raghavachari, Phys. Rev. Lett. 75, 3870 (1995)

    Article  Google Scholar 

  • B.-X. Li, P.-L. Cao, D.-L. Que, Phys. Rev. B 61, 1685 (2000); B.-X. Li, P.-L. Cao, B. Song, Z.-Z. Ye, J. Mol. Struct. (Theochem) 620, 189 (2003); M.C. Piqueras, R. Crespo, E. Orti, F. Tomas, Chem. Phys. Lett. 213, 509 (1993); R. Crespo, M.C. Piqueras, F. Tomas, Synth. Met. 77, 13 (1996); K. Jug, M. Krack, Chem. Phys. 173, 439 (1993); F.S. Khan, J.Q. Broughton, Phys. Rev. B 43, 11754 (1991); Z. Chen, H. Jiao, G. Seifert, A.H.C. Horn, D. Yu, T. Clark, W. Thiel, P.V.R. Schleyer, J. Comp. Chem. 24, 948 (2003); M. Menon, K.R. Subbaswamy, Chem. Phys. Lett. 219, 219 (1994)

    Article  ADS  Google Scholar 

  • M. Menon, J. Chem. Phys. 114, 7731 (2001)

    Article  ADS  Google Scholar 

  • M. Matsubara, C. Massobrio, J. Phys. Chem. A 109, 4415 (2005)

    Article  Google Scholar 

  • S. N. Khanna, B.K. Rao, P. Jena, Phys. Rev. Lett. 89, 016803 (2002); W. Zheng, J.M. Nilles, D. Radisic, K.H. Bowen, J. Chem. Phys. 122, 071101 (2005)

    Article  ADS  Google Scholar 

  • K. Jackson, B. Nellermoe, Chem. Phys. Lett. 254, 249 (1996); V. Kumar, Y.Kawazoe, Phys. Rev. Lett. 87, 045503 (2001); Phys. Rev. B 65, 073404 (2002); H. Kawamura, V. Kumar, Y. Kawazoe, Phys. Rev. B 70, 245433 (2004); C. Xiao, F. Hagelberg, W.A. Lester, Phys. Rev. B 66, 075425 (2002); A.K. Singh, V. Kumar, Y. Kawazoe, Phys. Rev. B 71, 115429 (2005)

    Article  Google Scholar 

  • Q. Sun, Q. Wang, P. Jena, B.K. Rao, Y. Kawazoe, Phys. Rev. Lett. 90, 135503 (2003); Q. Sun, Q. Wang, P. Jena, J.Z. Yu, Y. Kawazoe, Sci. Tech. Adv. Mats 4, 361 (2003); Q. Sun, Q. Wang, Y. Kawazoe, P. Jena, Eur. Phys. J. D 29, 231 (2004)

    Article  ADS  Google Scholar 

  • V.D. Gordon, E.S. Nathan, A.J. Apponi, M.C. McCarthy, P. Thaddeus, P. Botschwina, J. Chem. Phys. 113, 5311 (2000); J. Cernicharo, C.A. Gottlieb, M. Guelin, P. Thaddeus, J.M. Vrtilek, Astrophys. J. 341, L25 (1989); M. Oshishi, N. Kaifu, K. Kawaguchi, A. Murakami, S. Saito, S. Yamamoto, S.-I. Ishikawa, Y. Fujita, Y. Shiratori, W.M. Irvine, Astrophys. J. 34, L83 (1989); S. Hunsicker, R.O. Jones, J. Chem. Phys. 105, 5048 (1996); S. Osawa, M. Harada, E. Osawa, Fullerene Sci. Tech. 3, 225 (1995); M. Pellarin, C. Ray, J. Lerme, J.L. Vialle, M. Broyer, X. Blase, P. Keghelian, P. Melinon, A. Perez, J. Chem. Phys. 110, 6927 (1999); C. Ray, M. Pellarin, J.L. Lerme, J.L. Vialle, M. Broyer, X. Blase, P. Keghelian, P. Melinon, A. Perez, Phys. Rev. Lett. 80, 5365 (1998); W. Branz, I.M.L. Billas, N. Malinowski, F. Tast, M. Heinebrodt, T.P. Martin, J. Chem. Phys. 109, 3425 (1998); P. Pradhan, A.K. Ray, J. Mol. Struc. (Theochem) 716, 109 (2004); P. Pradhan, A.K. Ray, Eur. Phys. J. D 37, 393 (2006)

    Article  ADS  Google Scholar 

  • M.N. Huda, A.K. Ray, Phys. Rev. A 69, 011201 (R) (2004); M.N. Huda, A.K. Ray, Eur. Phys. J. D 31, 63 (2004)

    Article  ADS  Google Scholar 

  • A. Srinivasan, On the Existence and Stability of Carbon-Based Silicon Fullerenes – A Density Functional Theoretic Study, M.S. thesis, The University of Texas at Arlington, December 2005; A. Srinivasan, M.N. Huda, A.K. Ray, Phys. Rev. A. 72, 063201 (2005); A. Srinivasan, A.K. Ray, J. Nanosci. Nanotech. 6, 43 (2006)

    Article  ADS  Google Scholar 

  • J.P. Perdew, K. Burke, Y. Wang, Phys. Rev. B 54, 16533 (1996); J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996); J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992); J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 48, 4978 (1993)

    Article  ADS  Google Scholar 

  • P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 284 (1985)

    Article  ADS  Google Scholar 

  • M.J. Frisch et al., Gaussian 03 (Revision C.02), Gaussian Inc., Pittsburgh, PA, 2003.

  • R.O. Jones, J. Chem. Phys. 110, 5189 (1999); L. Turker, J. Mol. Struct. (Theochem) 625, 169 (2003); P.R.C. Kent, M.D. Towler, R.J. Needs, G. Rajagopal, Phys. Rev. B 62, 15394 (2000); J.M.L. Martin, J. El-Yazal, J.-P. Francois, Chem. Phys. Lett 255, 7 (1996); R.O. Jones, G. Seifert, Phys. Rev. Lett. 79, 443 (1997); J.I. Chavez, M.M. Carrillo, K.A. Beran, J. Comput. Chem. 25, 322 (2004); A.V. Orden, R.J. Saykally, Chem. Rev. 98, 2313 (1998); C. Zhang, X. Xu, H. Wu, Q. Zhang, Chem. Phys. Lett. 364, 213 (2002); W. Cai, N. Shao, X. Shao, Z. Pan, J. Mol. Struct. (Theochem) 678, 113 (2004); B.R. Eggen, R.L. Johnston, J.N. Murell, J. Chem. Soc. Faraday Trans. 90, 3029 (1994)

    Article  ADS  Google Scholar 

  • E.D. Glendening, J.K. Badenhoop, A.E. Reed, J.E. Carpenter, J.A. Bohmann, C.M. Morales, F. Weinhold, NBO 5.0, Theoretical Chemistry Institute, University of Wisconsin, Madison (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srinivasan, A., Huda, M. & Ray, A. A density functional theoretic study of novel silicon-carbon fullerene-like nanostructures: Si40C20, Si60C20, Si36C24, and Si60C24 . Eur. Phys. J. D 39, 227–236 (2006). https://doi.org/10.1140/epjd/e2006-00104-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2006-00104-5

PACS.

Navigation