Skip to main content
Log in

Electromagnetic momentum, magnetic model of light and effects of the Aharonov-Bohm type

  • Atomic Physics
  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

The wave equation for light propagation in slowly moving media, which is analogous to that of quantum effects of the Aharonov-Bohm type, is characterized by the interaction momentum \({\bf Q}\), related to the flow \( {\bf u}\). In effects of the Aharonov-Bohm type the interaction momentum \( {\bf Q}\) is related to the momentum of the electromagnetic (em) fields, that characterizes an em flow \({\bf u}\). It is shown that in both cases \({\bf Q}\) has the same physical origin. Calculation of the interaction em momentum \( {\bf Q}\) for the light wave dragged by the flow yields exactly the Fresnel-Fizeau momentum. These results corroborate the validity of the magnetic model for light and highlight the role and relevance of the em momentum in new effects of classical and quantum physics. A tentative test of an astrophysical Fizeau-Aharonov-Bohm effect is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J.H. Hannay, Cambridge University Hamilton prize essay (unpublished, 1976)

  • R.J. Cook, H. Fearn, P.W. Milonni, Am. J. Phys. 63, 705 (1995)

    Article  ADS  Google Scholar 

  • Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Y. Aharonov, A. Casher, Phys. Rev. Lett. 53, 319 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  • G. Spavieri, Phys. Rev. Lett. 81, 1533 (1998); G. Spavieri, Phys. Rev. A 59, 3194 (1999); G. Spavieri, Phys. Lett. A 310, 13 (2003); X.G. He, B. H.J. McKellar, Phys. Rev. A 47, 3424 (1993); M. Wilkens, Phys. Rev. A 49, 570 (1994); M. Wilkens, Phys. Rev. Lett. 72, 5 (1994); J. Yi, G.S. Jeon, M.Y. Choi, Phys. Rev. B 52, 7838 (1995); C.R. Hagen, Phys. Rev. Lett. 77, 1656 (1996); J. Anandan, Phys. Rev. Lett. 48, 1660 (1982); J. Anandan, Phys. Lett. A 138, 347 (1989); J. Anandan, Phys. Rev. Lett. 85, 1354 (2000); H. Wei, R. Han, X. Wei, Phys. Rev. Lett. 75, 2071 (1995); M. Peshkin, H.J. Lipkin, Phys. Rev. Lett. 74, 2847 (1995); J.P. Dowling, C.P. Williams, J.D. Franson, Phys. Rev. Lett. 83, 2486 (1999); V.M. Tkachuk, Phys. Rev. A 62, 052112-1 (2000)

    Article  ADS  Google Scholar 

  • G. Spavieri, Phys. Rev. Lett. 82, 3932 (1999)

    Article  ADS  Google Scholar 

  • G. Spavieri, Phys. Lett. A 310, 13 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • G. Spavieri, Eur. Phys. J. D 37, 327 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • R. Colella, A.W. Overhauser, S.A. Werner, Phys. Rev. Lett. 34, 1472 (1974)

    Article  ADS  Google Scholar 

  • U. Leonhardt, P. Piwnicki, Phys. Rev. A 60, 4301 (1999); U. Leonhardt, P. Piwnicki, Phys. Rev. Lett. 84, 822 (2000)

    Article  ADS  Google Scholar 

  • A.J. Fresnel, C.R. Acad. Sci. (Paris) 33, 349 (1851)

    Google Scholar 

  • H. Fizeau, C.R. Acad. Sci. (Paris) 33, 349 (1851)

    Google Scholar 

  • M.V. Berry, R.G. Chambers, M.D. Large, C. Upstill, J.C. Walmsley, Eur. J. Phys. 1, 154 (1980)

    Article  MathSciNet  Google Scholar 

  • P. Roux, J. de Rosny, M. Tanter, M. Fink, Phys. Rev. Lett. 79, 3170 (1997)

    Article  ADS  Google Scholar 

  • H. Davidowitz, V. Steinberg, Europhys. Lett. 38, 297 (1997)

    Article  ADS  Google Scholar 

  • U. Leonhardt, Phys. Rev. A, 62, 012111 (2000)

    Google Scholar 

  • J. Fiurasek, U. Leonhardt, R. Parentani, Phys. Rev. A, 65, 011802(R) (2001)

  • K.K. Nandi, Yuan-Zhong Zhang, P.M. Alsing, J.C. Evans, A. Bhadra, Phys. Rev. D 67, 025002 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  • G. Baym, Lectures on Quantum Mechanics (Benjamin/Cummings, 1969), Sect. 3, p. 74

  • M.V. Berry, Proc. R. Soc. Lond. A 392, 45 (1984); see also B. Simon, Phys. Rev. Lett. 51, 2167 (1983); W. Dittrich, M. Reuter, Classical and Quantum Dynamics, 2nd edn. (Springer-Verlag, New York, 1994), Chap. 28

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • J.D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley & Sons, New York, 1975), Sects. 7 and 11

  • L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Pergamon, Oxford, 1977)

  • W.K.H. Panofsky, M. Phillips, Classical Electricity and Magnetism, 2nd edn. (Addison-Wesley, Reading, 1962), Sect. 11-5

  • T.H. Boyer, Phys. Rev. D 8, 1667 (1973)

    Article  ADS  Google Scholar 

  • X. Zhu, W.C. Henneberger, J. Phys. A 23, 3983 (1990); these authors did not know the previous proof by Boyer

    Article  MathSciNet  ADS  Google Scholar 

  • G. Spavieri et al., Hadr. J. 18, 509 (1995)

    Google Scholar 

  • R.G. Chambers, Phys. Rev. Lett. 5, 3 (1960); see also A. Tomonura et al., Phys. Rev. Lett. 56, 792 (1986), and therein cited references

    Article  ADS  Google Scholar 

  • A justification of the minus sign (\({\bf Q}=-{\bf P}_{e}\)) in the AC effect, related to the so-called hidden momentum, is given in: Y. Aharonov, P. Pearle, L. Vaidman, Phys. Rev. A 37, 4052 (1988); see also, G. Spavieri, Nuovo Cim. B 109, 45 (1994)

    Article  Google Scholar 

  • W.G.V. Rosser, An Introduction to the Theory of Relativity (Butterworths, London, 1964), Sect. 8.5

  • R. Bowers, T. Deeming, Astrophysics (Jones and Bartlett, Boston, 1984), Chap. 18, Vol. II

  • M. Harwit, Astrophysical Concepts, 2nd edn. (Springer-Verlag, 1988), Sect. 9:7

  • K.R. Lang, Astrophysical Formulae, (Springer-Verlag, 1980), Sect. 5.3.4; see also R.J. Hamilton, F.K. Lamb, M.C. Miller, Astrophys. J. Suppl. 90, 837 (1994)

    Article  ADS  Google Scholar 

  • Curiosly, in the AC effect the interaction energy \({\bf v\cdot Q}=c^{-1}{\bf v\cdot m\times E}\) , when \({\bf m}\) represents the magnetic moment of the electron, coincides with the spin-orbit interaction term of atomic physics, i.e. the spin orbit term is given by the interaction energy associated with the em momentum \({\bf Q}\)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Spavieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spavieri, G. Electromagnetic momentum, magnetic model of light and effects of the Aharonov-Bohm type. Eur. Phys. J. D 39, 157–166 (2006). https://doi.org/10.1140/epjd/e2006-00089-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2006-00089-y

PACS.

Navigation