Skip to main content
Log in

Quantum heat engines, the second law and Maxwell's daemon

  • Quantum Optics and Quantum Information
  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

We introduce a class of quantum heat engines which consists of two-energy-eigenstate systems, the simplest of quantum mechanical systems, undergoing quantum adiabatic processes and energy exchanges with heat baths, respectively, at different stages of a cycle. Armed with this class of heat engines and some interpretation of heat transferred and work performed at the quantum level, we are able to clarify some important aspects of the second law of thermodynamics. In particular, it is not sufficient to have the heat source hotter than the sink, but there must be a minimum temperature difference between the hotter source and the cooler sink before any work can be extracted through the engines. The size of this minimum temperature difference is dictated by that of the energy gaps of the quantum engines involved. Our new quantum heat engines also offer a practical way, as an alternative to Szilard's engine, to physically realise Maxwell's daemon. Inspired and motivated by the Rabi oscillations, we further introduce some modifications to the quantum heat engines with single-mode cavities in order to, while respecting the second law, extract more work from the heat baths than is otherwise possible in thermal equilibria. Some of the results above are also generalisable to quantum heat engines of an infinite number of energy levels including 1-D simple harmonic oscillators and 1-D infinite square wells, or even special cases of continuous spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M.W. Zemansky, Heat and Thermodynamics, 5th edn. (McGraw-Hill, New York, 1968)

  • H. Callen, Thermodynamics (John Wiley & Sons, New York, 1960)

  • M. Planck, Eight Lectures on Theoretical Physics (Dover, New York, 1998)

  • W. Pauli, Statistical Mechanics, in Pauli Lectures on Physics (Dover, New York, 2000)

  • R.C. Tolman, The Principles of Statistical Mechanics (Dover, New York, 1979)

  • T. Kieu, Phys. Rev. Lett. 94, 140403 (2004)

    Article  MathSciNet  Google Scholar 

  • W. Zurek, arXiv:quant-ph/0301076 (2003)

  • R. Geva, R. Kosloff, J. Chem. Phys. 96, 3054 (1992)

    Article  ADS  Google Scholar 

  • T. Feldmann, E. Geva, R. Kosloff, Am. J. Phys. 64, 485 (1996)

    Article  ADS  Google Scholar 

  • T. Feldmann, R. Kosloff, Phys. Rev. E 61, 4774 (2000)

    Article  ADS  Google Scholar 

  • C. Bender, D. Brody, B. Meister, J. Phys. A 33, 4427 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • T. Opatrny, M. Scully, Fortschr. Phys. 50, 657 (2002)

    Article  ADS  Google Scholar 

  • M.O. Scully, M.S. Zubairy, G.A. Agarwal, H. Walther, Science 299, 862 (2003)

    Article  ADS  Google Scholar 

  • J. Arnaud, L. Chusseau, F. Philippe, arXiv:quant-ph/0211072 (2003)

  • K. Maruyama, F. Morikoshi, V. Vedra, Phys. Rev. A 71, 012108 (2005)

    Article  ADS  Google Scholar 

  • H. Quan, P. Zhang, C. Sun, Phys. Rev. E 72, 056110 (2005)

    Article  ADS  Google Scholar 

  • J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955)

  • E. Schrödinger, Statistical Thermodynamics (Dover, New York, 1989)

  • A. Messiah, Quantum Mechanics (Dover, New York, 1999)

  • A. Allahverdyan, T. Nieuwenhuizen, Phys. Rev. E 71, 046107 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  • A. Allahverdyan, T. Nieuwenhuizen, Phys. Rev. E 71, 066102 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  • Maxwell's Demon: Entropy, Information, Computing edited by H.S. Leff, A.F. Rex (Princeton University Press, Princeton, 1990)

  • S. Lloyd, Phys. Rev. A 56, 3374 (1997)

    Article  ADS  Google Scholar 

  • M. Nielsen, C. Caves, B. Schumacher, H. Barnum, Proc. Roy. Soc. A 454, 277 (1998)

    Article  MATH  ADS  Google Scholar 

  • H. Scovil, E. Schulz-DuBois, Phys. Rev. Lett. 2, 262 (1959)

    Article  ADS  Google Scholar 

  • M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)

  • L. Landau, E. Lifshitz, L. Pitaevskii, Statistical Physics, 3rd edn. Part 1 (Pergamon Press, Oxford, 1980)

  • A. Lenard, J. Stat. Phys. 19, 575 (1978)

    Article  MathSciNet  Google Scholar 

  • H. Tasaki, arXiv:cond-mat/0009206 (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. D. Kieu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kieu, T. Quantum heat engines, the second law and Maxwell's daemon. Eur. Phys. J. D 39, 115–128 (2006). https://doi.org/10.1140/epjd/e2006-00075-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2006-00075-5

PACS.

Navigation