Skip to main content
Log in

Probing spin-orbit quenching in Cl (2P) + H2 via crossed molecular beam scattering

  • Dynamics and Stereodynamics of Bimolecular Collisions
  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

In our previous work we investigated electronically non-adiabatic effects in \(\rm Cl~(^{2}P_{3/2,1/2})+D_{2}\) using crossed molecular beam scattering coupled with velocity mapped ion imaging. The prior experiments placed limits on the cross-section for electronically non-adiabatic spin-orbit excitation \(\rm Cl~(^{2}P_{3/2})+D_{2} \to Cl^*~(^{2}P_{1/2})+D_{2}\) and electronically non-adiabatic spin-orbit quenching \(\rm Cl^*~(^{2}P_{1/2})+D_{2}\to Cl~(^{2}P_{3/2})+D_{2}\). In the present work, we investigate electronically non-adiabatic spin-orbit quenching for \(\rm Cl^*~(^{2}P_{1/2})+H_{2}\) which is the required first step for the reaction of Cl* to produce ground state HCl+H products. In these experiments we collide Cl (2P) with H2 at a series of fixed collision energies using a crossed molecular beam machine with velocity mapped ion imaging detection. Through an analysis of our ion images, we determine the fraction of electronically adiabatic scattering in Cl* +H2, which allows us to place limits on the cross-section for electronically non-adiabatic scattering or quenching. We determine the following quenching cross-sections σ quench(2.1 kcal/mol) = 26 ±  21 Å2, σ quench(4.0 kcal/mol) = 21 ±  49 Å2, and σ quench(5.6 kcal/mol) = 14 ±  41 Å2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • H.A. Michelsen, W.R. Simpson, J. Phys. Chem. A 105, 1476 (2001); S.M. Senkan, J.M. Robinson, A.K. Gupta, Combust. Flame 49, 305 (1983)

    Article  Google Scholar 

  • M.H. Alexander, G. Capecchi, H.J. Werner, Science 296, 715 (2002)

    Article  ADS  Google Scholar 

  • M.H. Alexander, G. Capecchi, H.-J. Werner, Faraday Discuss. 127, 59 (2004)

    Article  Google Scholar 

  • N. Balucani, D. Skouteris, L. Cartechini, G. Capozza, E. Segoloni, P. Casavecchia, M.H. Alexander, G. Capecchi, H.-J. Werner, Phys. Rev. Lett. 91, 013201 (2003)

    Article  ADS  Google Scholar 

  • U. Manthe, W. Bian, H.-J. Werner, Chem. Phys. Lett. 313, 647 (1999); U. Manthe, G. Capecchi, H.-J. Werner, Phys. Chem. Chem. Phys. 6, 5026 (2004)

    Article  Google Scholar 

  • S.S. Kumaran, K.P. Lim, J.V. Michael, J. Chem. Phys. 101, 9487 (1994); C.A. Taatjes, Chem. Phys. Lett. 306, 33 (1999)

    Article  ADS  Google Scholar 

  • D. Skouteris, D.E. Manolopoulos, W. Bian, H.-J. Werner, L.-H. Lai, K. Liu, Science 286, 1713 (1999)

    Article  Google Scholar 

  • S.-H. Lee, L.-H. Lai, K. Liu, H. Chang, J. Chem. Phys. 110, 8229 (1999)

    Article  ADS  Google Scholar 

  • S.-H. Lee, K. Liu, J. Chem. Phys. 111, 6253 (1999)

    Article  ADS  Google Scholar 

  • F. Dong, S.-H. Lee, K. Liu, J. Chem. Phys. 115, 1197 (2001)

    Article  ADS  Google Scholar 

  • F. Rebentrost, J. Lester, J. Chem. Phys. 67, 3367 (1977); R.E. Wyatt, R.B. Walker, J. Chem. Phys. 70, 1501 (1979)

    Article  ADS  Google Scholar 

  • D.M. Neumark, A.M. Wodtke, G.N. Robinson, C.C. Hayden, Y.T. Lee, Phys. Rev. Lett. 53, 226 (1984); D.M. Neumark, A.M. Wodtke, G.N. Robinson, C.C. Hayden, Y.T. Lee, J. Chem. Phys. 82, 3045 (1985); W.B. Chadman, B.W. Blackmon, D.J. Nesbitt, J. Chem. Phys. 107, 8193 (1997); F. Dong, S.-H. Lee, K. Liu, J. Chem. Phys. 113, 3633 (2000); S.A. Nizkorodov, W.W. Harper, W.B. Chapman, B.B. Blackmon, D.J. Nesbitt, J. Chem. Phys. 111, 8404 (1999); D.E. Manolopoulos, J. Chem. Soc. Faraday Trans. 93, 673 (1997)

    Article  ADS  Google Scholar 

  • S.A. Nizkorodov, W.W. Harper, D.J. Nesbitt, Faraday Disscus. Chem. Soc. 113, 107 (1999)

    Google Scholar 

  • M.H. Alexander, D.E. Manolopoulos, H.-J. Werner, J. Chem. Phys. 113, 11084 (2000)

    Article  ADS  Google Scholar 

  • B.F. Parsons, D.W. Chandler, J. Chem. Phys. 122, 174306 (2005)

    Article  ADS  Google Scholar 

  • D. Proch, T. Trickl, Rev. Sci. Instrum. 60, 713 (1989)

    Article  ADS  Google Scholar 

  • D.W. Chandler, P.L. Houston, J. Chem. Phys. 87, 1445 (1987); D.H. Parker, A.T.J.B. Eppink, J. Chem. Phys. 107, 2357 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. W. Chandler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parsons, B., Strecker, K. & Chandler, D. Probing spin-orbit quenching in Cl (2P) + H2 via crossed molecular beam scattering. Eur. Phys. J. D 38, 15–20 (2006). https://doi.org/10.1140/epjd/e2006-00018-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2006-00018-2

PACS.

Navigation