Skip to main content
Log in

Experimental studies of complex crater formation under cluster implantation of solids

  • Clusters and Nanostructures
  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

The results of a systematic study of surface defect formation after energetic Arn+ (n = 12, 22, 32, 54) and Xen+ (n = 4, 16) cluster ion implantation into silicon and sapphire are presented. Implantation energies vary from 3 to 18 keV/ion. Two cases of comparative studies are carried out: the same cluster species are implanted into two different substrates, i.e. Arn+ cluster ions into silicon and sapphire and two different cluster species Arn+ and Xen+ are implanted into the same kind of substrate (silicon). Atomic force, scanning electron and transmission electron microscopies (AFM, SEM and TEM) are used to study the implanted samples. The analysis reveals the formation of two types of surface erosion defects: simple and complex (with centrally positioned hillock) craters. It is found that the ratio of simple to complex crater formation as well as the hillock dimensions depend strongly on the cluster species, size and impact energy as well as on the type of substrate material. Qualitative models describing the two comparative cases of cluster implantation, the case of different cluster species and the case of different substrate materials, are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • I. Yamada, J. Matsuo, N. Toyoda, A. Kirkpatrick, Mater. Sci. Eng. R 34, 231 (2001)

    Article  Google Scholar 

  • R.E. Palmer, S. Pratontep, H.-G. Boyen, Nat. Mater. 2, 443 (2003)

    Article  PubMed  Google Scholar 

  • C. Binns, Surf. Sci. Rep. 44, 1 (2001)

    Article  Google Scholar 

  • A. Perez, P. Melinon, V. Dupuis, P. Jensen, A. Prevel, J. Tuaillon, L. Bardotti, C. Martet, M. Treilleux, M. Broyer, M. Pellarin, J.L. Vaille, B. Palpant, J. Lerme, J. Phys. D 30, 709 (1997)

    Article  Google Scholar 

  • Y. Qiang, Y. Thurner, T. Reiners, O. Rattunde, H. Haberland, Surf. Coating Tech. 100-101, 27 (1998)

    Google Scholar 

  • H.-J. Gao, S.J. Pang, Z.Q. Xue, in Electrical and optical polymer systems, edited by D.L. Wise, G.E. Wnek, B.J. Trantolo, T.H. Cooper, J.D. Gresser (Marcel Dekker, New York, 1998), p. 729

  • Metal clusters at surfaces, edited by K.-H. Meiwes-Broer (Springer, Berlin, 2000)

  • K.L. Merkle, W. Jager, Phil. Mag. A 44, 741 (1981)

    Google Scholar 

  • F. Seitz, J.S. Koehler, Solid state physics: advances in research and applications, edited by F. Seitz, D. Turnbull (Academic, New York, 1956), Vol. 2

  • R. Kelly, Radiat. Eff. 32, 91 (1977)

    Google Scholar 

  • L. Porte, M. Phaner, C.H. de Villeneuve, N. Moncoffre, J. Tousset, Nucl. Instrum. Meth. Phys. Res. B 44, 116 (1989)

    Article  Google Scholar 

  • Q. Yang, T. Li, B.V. King, R.J. MacDonald, Phys. Rev. B 53, 3032 (1996)

    Article  Google Scholar 

  • I.C. Gebeshuber, S. Cernusca, F. Aumayr, H.P. Winter, Int. J. Mass Spectrom. 229, 27 (2003)

    Article  Google Scholar 

  • A. Audouard, R. Mamy, M. Toulemonde, G. Szenes, L. Thome, Europhys. Lett. 40, 527 (1997)

    Article  Google Scholar 

  • V.A. Skuratov, D.L. Zagorski, A.E. Efimov, V.A. Kluev, Y.P. Toporov, B.V. Mchedlishvili, Radiat. Meas. 34, 571 (2001)

    Article  Google Scholar 

  • C. Müller, M. Cranney, A. El-Said, N. Ishikawa, A. Iwase, M. Lang, R. Neumann, Nucl. Instrum. Meth. Phys. Res. B 191, 246 (2002)

    Article  Google Scholar 

  • G. Szenes, Nucl. Instrum. Meth. Phys. Res. B 191, 27 (2002)

    Article  Google Scholar 

  • L.P. Allen, Z. Insepov, D.B. Fenner, C. Santeufemio, W. Brooks, K.S. Jones, I. Yamada, J. Appl. Phys. 92, 3671 (2002)

    Article  Google Scholar 

  • D. Takeuchi, T. Seki, A. Takaaki, J. Matsuo, I. Yamada, Mat. Chem. Phys. 54, 76 (1998)

    Article  Google Scholar 

  • T.J. Colla, R. Aderjan, R. Kissel, H.M. Urbassek, Phys. Rev. B 62, 8487 (2000)

    Article  Google Scholar 

  • Y. Yamaguchi, J. Gspann, Phys. Rev. B 66, 155408 (2002)

    Article  Google Scholar 

  • M. Moseler, O. Rattunde, J. Nordiek, H. Haberland, Nucl. Instrum. Meth. Phys. Res. B 164-165, 522 (2000)

    Google Scholar 

  • Z. Insepov, R. Manory, J. Matsuo, I. Yamada, Nucl. Instrum. Meth. Phys. Res. B 148, 47 (1999)

    Article  Google Scholar 

  • Y. Yamamura, Nucl. Instrum. Meth. Phys. Res. B 33, 493 (1988)

    Article  Google Scholar 

  • V.I. Shulga, M. Vicanek, P. Sigmund, Phys. Rev. A 39, 3360 (1989)

    Article  PubMed  Google Scholar 

  • S. Pratontep, P. Preece, C. Xirouchaki, R.E. Palmer, C.F. Sanz-Navarro, S.D. Kenny, R. Smith, Phys. Rev. Lett. 90, 055503 (2003)

    Article  PubMed  Google Scholar 

  • L. Seminara, P. Convers, R. Monot, W. Harbich, Eur. Phys. J. D 29, 49 (2004)

    Google Scholar 

  • J.H. Liang, H.M. Han, Nucl. Instrum. Meth. Phys. Res. B 228, 250 (2005)

    Article  Google Scholar 

  • N.R. Arista, A. Gras-Marti, J. Phys.: Condens. Matter 3, 7931 (1991)

    Article  Google Scholar 

  • P. Von Blanckenhagen, A. Gruber, J. Gspann, Nucl. Instr. Meth. Phys. Res. B 122, 322 (1997)

    Article  Google Scholar 

  • J.-H. Song, S.N. Kwon, D.-K. Choi, W.-K. Choi, Nucl. Instrum. Meth. Phys. Res. B 179, 568 (2001)

    Article  Google Scholar 

  • M. Döbeli, F. Ames, C.R. Musil, L. Scandella, M. Suter, H.A. Synal, Nucl. Instrum. Meth. Phys. Res. B 143, 503 (1998)

    Article  Google Scholar 

  • P.A. Thevenard, J.-P. Dupin, B. Vu Thien, S.T. Purcell, V. Semet, Surf. Coating Tech. 128, 59 (2000)

    Article  Google Scholar 

  • B. Canut, P. Thevenard, C. Jardin, Nucl. Instrum. Meth. Phys. Res. B 218, 487 (2004)

    Article  Google Scholar 

  • J.C. Girard, A. Michel, C. Tromas, C. Jaouen, S. Della-Negra, Nucl. Instrum. Meth. Phys. Res. B 209, 85 (2003)

    Article  Google Scholar 

  • V.N. Popok, S.V. Prasalovich, E.E.B. Campbell, Surf. Sci. 566-568, 1179 (2004)

    Google Scholar 

  • V.N. Popok, S.V. Prasalovich, M. Samuelsson, E.E.B. Campbell, Rev. Sci. Instrum. 73, 4283 (2002)

    Article  Google Scholar 

  • V.N. Popok, S.V. Prasalovich, E.E.B. Campbell, Nucl. Instrum. Meth. Phys. Res. B 207, 145 (2003)

    Article  Google Scholar 

  • CrysTec GmbH, www.crystec.de

  • Crystal GmbH, www.crystal-gmbh.com

  • CRC Handbook of Chemistry and Physics edited by D.R. Lide, 81st edn. (CRC Press, Cleveland, 2000)

  • J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985)

  • D.M. Parkin, C.A. Coulter, J. Nucl. Mater. 101, 261 (1981)

    Article  Google Scholar 

  • V.N. Popok, S.V. Prasalovich, E.E.B. Campbell, Vacuum 76, 265 (2004)

    Article  Google Scholar 

  • J. Samela, K. Nordlund, private communications

  • T. Aoki, J. Matsuo, G. Takaoka, I. Yamada, Nucl. Instrum. Meth. Phys. Res. B 206, 861 (2003)

    Article  Google Scholar 

  • R. Kramer, Y. Yamaguchi, J. Gspann, Surf. Interface Anal. 36, 148 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Popok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasalovich, S., Popok, V., Persson, P. et al. Experimental studies of complex crater formation under cluster implantation of solids. Eur. Phys. J. D 36, 79–88 (2005). https://doi.org/10.1140/epjd/e2005-00197-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2005-00197-2

Keywords

Navigation