Advertisement

Accurate characterisation of the C(3)1Σ+ state of the NaRb molecule

  • W. Jastrzebski
  • P. Kortyka
  • P. Kowalczyk
  • O. Docenko
  • M. Tamanis
  • R. Ferber
  • A. Pashov
  • H. Knöckel
  • E. Tiemann
Atomic and Molecular Collisions

Abstract.

We present a first detailed experimental study of the C(3)1Σ+ state of the NaRb molecule converging to the Na(3p) + Rb(5s) states of separated atoms. Two different high resolution spectroscopic methods have been applied: the Fourier transform spectroscopy of laser induced fluorescence and the V-type optical-optical double resonance polarization labeling spectroscopy. The entire data field for the C1Σ+ state of Na85Rb and Na87Rb consists of rovibrational levels with v'=0–64 and J'=4–123. The data were incorporated into a direct fit of a single potential energy curve to the level energies using the Inverted Perturbation Approach method. As the experimental data extend to the “shelf" region of the potential at large internuclear separations of 8.5 Å, the C state's suitability for photoassociation yielding cold heteronuclear NaRb is discussed.

Keywords

Energy Curve Entire Data Double Resonance Potential Energy Curve Accurate Characterisation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

online_mat1_d04358.pdf (44 kb)
PDF (44 k)
online_mat2_d04358.pdf (69 kb)
PDF (69 k)
online_mat3_d04358.pdf (44 kb)
PDF (44 k)
online_mat4_d04358.pdf (43 kb)
PDF (43 k)

References

  1. For an overview of the present activitities in the field of ultracold molecules, see special issue Eur. Phys. J. D 31, No. 2 (2004) Google Scholar
  2. D. Wang, J. Qi, M.F. Stone, O. Nikolayeva, B. Hattaway, S.D. Gensemer, H. Wang, W.T. Zemke, P.L. Gould, E.E. Eyler, W.C. Stwalley, Eur. Phys. J. D 31, 165 (2004) CrossRefGoogle Scholar
  3. T. Bergeman, A.J. Kerman, J.M. Sage, S. Sainis, D. DeMille, Eur. Phys. J. D 31, 179 (2004) CrossRefGoogle Scholar
  4. C. Haimberger, J. Kleinert, M. Bhattacharya, N.P. Bigelow, Phys. Rev. A 70, 21402 (2004) CrossRefGoogle Scholar
  5. M.W. Mancini, G.D. Telles, A.R.L. Caires, V.S. Bagnato, L.G. Marcassa, Phys. Rev. Lett. 92, 133203 (2004) CrossRefPubMedGoogle Scholar
  6. S. Azizi, M. Aymar, O. Dulieu, Eur. Phys. J. D 31, 195 (2004) CrossRefGoogle Scholar
  7. M. Korek, A.R. Allouche, M. Kobeissi, A. Chaalan, M. Dagher, K. Fakherddin, M. Aubert-Frécon, Chem. Phys. 256, 1 (2000) CrossRefGoogle Scholar
  8. A. Zaitsevskii, S.O. Adamson, E.A. Pazyuk, A.V. Stolyarov, O. Nikolayeva, O. Docenko, I. Klincare, M. Auzinsh, M. Tamanis, R. Ferber, R. Cimiraglia, Phys. Rev. A 63, 052504 (2001) CrossRefGoogle Scholar
  9. M. Aymar, O. Dulieu, private communication (2004) Google Scholar
  10. O. Docenko, M. Tamanis, R. Ferber, A. Pashov, H. Knöckel, E. Tiemann, Phys. Rev. A 69, 042503 (2004) CrossRefGoogle Scholar
  11. O. Docenko, M. Tamanis, R. Ferber, A. Pashov, H. Knöckel, E. Tiemann, Eur. Phys. J. D (2005, submitted) Google Scholar
  12. Y.-C. Wang, K. Matsubara, H. Katô, J. Chem. Phys. 97, 811 (1992) CrossRefGoogle Scholar
  13. O. Allard, C. Samuelis, A. Pashov, H. Knöckel, E. Tiemann, Eur. Phys. J. D 26, 155 (2003) Google Scholar
  14. C. Amiot, J. Chem. Phys. 93, 8591 (1990) CrossRefGoogle Scholar
  15. W. Jastrzebski, P. Kowalczyk, Phys. Rev. A 51, 1046 (1995) CrossRefPubMedGoogle Scholar
  16. A. Pashov, W. Jastrzebski, P. Kowalczyk, Comput. Phys. Commun. 128, 622 (2000) CrossRefGoogle Scholar
  17. W. Kosman, J. Hinze, J. Mol. Spectrosc. 56, 93 (1975) CrossRefGoogle Scholar
  18. C. Vidal, H. Scheingraber, J. Mol. Spectrosc. 65, 46 (1977) CrossRefGoogle Scholar
  19. W. Jastrzebski, W. Jasniecki, P. Kowalczyk, R. Nadyak, A. Pashov, Phys. Rev. A 62, 042509 (2000) CrossRefGoogle Scholar
  20. W. Jastrzebski, A. Pashov, P. Kowalczyk, J. Chem. Phys. 114, 10725 (2001) CrossRefGoogle Scholar
  21. A. Pashov, W. Jastrzebski, P. Kowalczyk, J. Chem. Phys. 113, 6624 (2000) CrossRefGoogle Scholar
  22. W. Jastrzebski, R. Nadyak, P. Kowalczyk, Chem. Phys. Lett. 374, 297 (2003) CrossRefGoogle Scholar
  23. A. Grochola, W. Jastrzebski, P. Kowalczyk, S. Magnier, M. Aubert-Frécon, J. Mol. Spectrosc. 224, 151 (2004) CrossRefGoogle Scholar
  24. B. Bussery, Y. Achkar, M. Aubert-Frećon, Chem. Phys. 116, 319 (1987) CrossRefGoogle Scholar
  25. W.H. Press, S.A. Teukolski, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran 77 (Cambrige Unversity Press, 1992) Google Scholar
  26. A. Grochola, W. Jastrzebski, P. Kowalczyk, A. Pashov, J. Chem. Phys. 121, 5754 (2004) CrossRefPubMedGoogle Scholar
  27. A. Pashov, O. Docenko, M. Tamanis, R. Ferber, H. Knöckel, E. Tiemann, Phys. Rev. A (2005, submitted) Google Scholar
  28. C. Drag, B. Laburthe Tolra, O. Dulieu, D. Comparat, M. Vatasescu, S. Boussen, S. Guibal, A. Crubellier, P. Pillet, IEEE J. Quant. El. 36, 1378 (2000) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  • W. Jastrzebski
    • 1
  • P. Kortyka
    • 1
  • P. Kowalczyk
    • 2
  • O. Docenko
    • 3
  • M. Tamanis
    • 3
  • R. Ferber
    • 3
  • A. Pashov
    • 4
  • H. Knöckel
    • 4
  • E. Tiemann
    • 4
  1. 1.Institute of Physics, Polish Academy of SciencesWarsawPoland
  2. 2.Institute of Experimental Physics, Warsaw UniversityWarsawPoland
  3. 3.Department of Physics and Institute of Atomic Physics and Spectroscopy, University of LatviaRigaLatvia
  4. 4.Institut für Quantenoptik, Universität HannoverHannoverGermany

Personalised recommendations