Probing the electronic structure of mono-nitrogen doped aluminum clusters using anion photoelectron spectroscopy

Electronic and Structural Properties

Abstract.

We report a photoelectron spectroscopic investigation of mono-nitrogen doped aluminum cluster anions AlnN- (n = 2-22). Well-resolved spectra were obtained at three photon energies (355, 266, and 193 nm), revealing the structural and electronic evolution as the number of aluminum atoms increases in the doped clusters. For small AlnN (n < 9) clusters, the Al atoms may be viewed to be monovalent, similar to pure aluminum clusters. Even-odd alternation of the electron affinities was observed for AlnN clusters, suggesting that neutral clusters with odd n are closed shell and those with even n are open shell. The most interesting observation is the similarity between the spectra of AlnN- and Al(n-1)- for n>12. This observation suggests that these clusters can be described as (AlN)Al(n-1)-, i.e., an AlN unit weakly interacting with Al(n-1)- clusters. The electronic and atomic structural implications of this observation are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993) Google Scholar
  2. M. Brack, Rev. Mod. Phys. 65, 677 (1993) Google Scholar
  3. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt, Rinehart, and Winston, New York, 1976) Google Scholar
  4. X. Li, H. Wu, X.B. Wang, L.S. Wang, Phys. Rev. Lett. 81, 1909 (1998) Google Scholar
  5. C.E. Moore, in Atomic Energy Levels, Natl. Bur. Stand. (U.S.) Circ. (U.S. GPO, Washington, D.C., 1971), Vol. I Google Scholar
  6. W.D. Knight et al., Phys. Rev. Lett. 52, 2141 (1984) Google Scholar
  7. W. Ekardt, Phys. Rev. B 29, 1558 (1984) Google Scholar
  8. M.L. Cohen et al., J. Phys. Chem. 91, 3141 (1987) Google Scholar
  9. M. Ueno, A. Onodera, O. Shimomura, K. Takemure, Phys. Rev. B 45, 10123 (1992) Google Scholar
  10. F.A. Ponce, D.P. Bour, Nature 386, 351 (1997) Google Scholar
  11. T. Bergmann, H. Limberger, T.P. Martin, Phys. Rev. Lett. 60, 1767 (1988) Google Scholar
  12. T. Bergmann, T.P. Martin, J. Chem. Phys. 90, 2848 (1989) Google Scholar
  13. P.V.R. Schleyer, A.I. Boldyrev, J. Chem. Soc. Chem. Commun. 1536 (1991) Google Scholar
  14. S.K. Nayak, S.N. Khanna, P. Jena, Phys. Rev. B 57, 3787 (1998) Google Scholar
  15. S.K. Nayak, B.K. Rao, P. Jena, X. Li, L.S. Wang, Chem. Phys. Lett. 301, 379 (1999) Google Scholar
  16. B.D. Leskiw, A.W. Castleman Jr, C. Ashman, S.N. Khanna, J. Chem. Phys. 114, 1165 (2001) Google Scholar
  17. L.S. Wang, H.S. Cheng, J. Fan, J. Chem. Phys. 102, 9480 (1995) Google Scholar
  18. J. Akola, M. Manninen, H. Hakkinen, U. Landman, X. Li, L.S. Wang, Phys. Rev. B 60, R11297 (1999) Google Scholar
  19. J. Akola, M. Manninen, H. Hakkinen, U. Landman, X. Li, L.S. Wang, Phys. Rev. B 62, 13216 (2000) Google Scholar
  20. B.K. Rao, P. Jena, J. Chem. Phys. 111, 1890 (1999) Google Scholar
  21. S.N. Khanna, P. Jena, Phys. Rev. Lett. 69, 1664 (1992) Google Scholar
  22. X.G. Gong, V. Kumar, Phys. Rev. Lett. 70, 2078 (1993) Google Scholar
  23. K.P. Huber, G. Herzberg, Constants of Diatomic Molecules (Nostrand-Reinhold, New York, 1979) Google Scholar
  24. B.K. Rao, P. Jena, J. Chem. Phys. 115, 778 (2001) Google Scholar
  25. S.F. Li, X.G. Gong, Phys. Rev. B 70, 075404 (2004) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Physics, Washington State University, 2710 University Drive, Richland, Washington 99352,, Pacific Northwest National LaboratoryRichlandUSA

Personalised recommendations