Skip to main content
Log in

Electron attachment to strongly polar clusters

Formamide molecule and clusters

  • Fundamental Processes in the Gas Phase
  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

Electron localization is studied in formamide cluster anions. The isolated formamide molecule has a large dipole moment and its clusters can give birth to multipole-bound anions as well as valence anions. The vertical valence electron affinity of the isolated molecule is determined by electron transmission spectroscopy. The anion formation process is studied as a function of cluster size with Rydberg electron transfer spectroscopy. DFT calculations of the neutral and negatively-charged cluster structures show that the anion excess electron localizes on a single molecule. The adiabatic valence electron affinity of isolated formamide is deduced from the observation of the cluster size threshold for valence attachment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • E. Fermi, E. Teller, Phys. Rev. 72, 399 (1947)

    Article  Google Scholar 

  • P. Skurski, J. Simons, J. Chem. Phys. 112, 6562 (2000)

    Article  Google Scholar 

  • H. Haberland, H. Ludewigt, C. Schindler, D.R. Worsnop, Phys. Rev. A 36, 967 (1987)

    Article  PubMed  Google Scholar 

  • J. Kalcher, Theoretical prospects of negative ions (Research SignPost, Trivandrum, India, 2002)

  • J.R.R. Verlet, A.E. Bragg, A. Kammrath, O. Chesnowsky, D.M. Neumark, Science 307, 93 (2005)

    Article  PubMed  Google Scholar 

  • E. Illenberger, Chem. Rev. 92, 1589 (1992)

    Article  Google Scholar 

  • H. Abdoul-Carime, J.P. Schermann, C. Desfrançois, Few-Body Systems 31, 183 (2002)

    Article  Google Scholar 

  • H.M. Lee, S.B. Suh, K.S. Kim, J. Chem. Phys. 118, 9981 (2003)

    Article  Google Scholar 

  • J.W. Shin, N.I. Hammer, J.M. Headrick, M.A. Johnson, Chem. Phys. Lett. 399, 349 (2004)

    Article  Google Scholar 

  • H. Haberland, C. Schindler, H.G. Worsnop, Ber. Bunsenges. Phys. Chem. 88, 270 (1984)

    Google Scholar 

  • J.V. Coe, G.H. Lee, J.G. Eaton, S.T. Arnold, H.W. Sarkas, K.H. Bowen, C. Ludewigt, H. Haberland, D.R. Worsnop, J. Chem. Phys. 92, 3980 (1990)

    Article  Google Scholar 

  • C. Desfrançois, A. Lisfi, J.P. Schermann, Z. Phys. D 24, 297 (1992)

    Article  Google Scholar 

  • G.J. Schulz, Rev. Mod. Phys. 45, 378 (1973)

    Article  Google Scholar 

  • L. Sanche, G.J. Schulz, Phys. Rev. A 5, 1672 (1972)

    Article  Google Scholar 

  • K. Harth, M.-W. Rüf, H. Hotop, Z. Phys. D 14, 149 (1989)

    Article  Google Scholar 

  • C. Desfrançois, V. Périquet, S. Carles, J.P. Schermann, L. Adamowicz, Chem. Phys. 239, 475 (1998)

    Article  Google Scholar 

  • B. Lucas, F. Lecomte, B. Reimann, H.D. Barth, G. Grégoire, Y. Bouteiller, J.P. Schermann, C. Desfrançois, Phys. Chem. Chem. Phys. 6, 2600 (2004)

    Article  Google Scholar 

  • C.C. Wu, J.C. Jiang, I. Hahndorf, C. Chaudhuri, Y.T. Lee, H.C. Chang, J. Phys. Chem. A 104, 9556 (2000)

    Article  Google Scholar 

  • T. Maeyama, N. Mikami, Phys. Chem. Chem. Phys. 6, 1137 (2003)

    Google Scholar 

  • A. Modelli, D. Jones, G. Distefano, Chem. Phys. Lett. 86, 434 (1982)

    Article  Google Scholar 

  • A.R. Johnston, P.D. Burrow, J. Electron. Spectrosc. Relat. Phenom. 25, 119 (1982)

    Article  Google Scholar 

  • P.D. Burrow, J.A. Michejda, Chem. phys. Lett. 42, 223 (1976)

    Article  Google Scholar 

  • A. Modelli, G. Distefano, D. Jones, Chem. Phys. 73, 395 (1982)

    Article  Google Scholar 

  • A. Modelli, H.D. Martin, J. Phys. Chem. A 106, 7271 (2002)

    Article  Google Scholar 

  • F.B. Dunning, J. Phys. B 28, 1645 (1995)

    Google Scholar 

  • M.J. Frisch, G.W. Trucks, H.B. Schlegel, H.B. Scuseria, G.E. Robb, M.A. Cheeseman, J.R. Zakrzewski, V.G. Montgomery, J.A. Stratmann, R.E. Burant, J.C. Dapprich, S. Millam, J.M. Daniels, A.D. Kudin, K.N. Strain, M.O. Farkas, O. Tomasi, J. Barone, V. Cossi, M. Cammi, R. Mennucci, B. Pomelli, C. Adamo, C. Clifford, S. Ochterski, J. Petersson, G.A. Ayala, Q.P.Y. Cui, K. Morokuma, K. Malick, D.K. Rabuck, A.D. Raghavachari, K. Foresman, J.B. Cioslowski, J. Ortiz, J.V. Stefanov, B.B. Liu, G. Liashenko, A. Piskorz, P. Komaromi, I. Gomperts, R. Martin, R.L. Fox, D.J. Keith, T. Al-Laham, M.A. Peng, C.Y. Nanayakkara, A. Gonzalez, C. Challacombe, M. Gill, P.M.W. Johnson, B. Chen, W. Wong, M.W. Andres, J.L. Head-Gordon, E.S. Replogle, J.A. Popple, Revision A6 ed. (Pittsburg, PA, 1998)

  • C. Desfrançois, Y. Bouteiller, J.P. Schermann, D. Radisic, S.T. Stockes, K.H. Bowen, N.I. Hammer, R.N. Compton, Phys. Rev. Lett. 92, 083003 (2004)

    Article  PubMed  Google Scholar 

  • A. Modelli, Trends Chem. Phys. 6, 57 (1997)

    Google Scholar 

  • D. Chen, G.A. Gallup, J. Chem. Phys. 93, 8893 (1990)

    Article  Google Scholar 

  • S.S. Staley, J.T. Strnad, J. Phys. Chem. 98, 161 (1994)

    Article  Google Scholar 

  • J.S. Chao, M.F. Falcetta, K.D. Jordan, J. Chem. Phys. 93, 1125 (1990)

    Article  Google Scholar 

  • A. Modelli, Phys. Chem. Chem. Phys. 5, 2923 (2003)

    Article  Google Scholar 

  • A. Modelli, B. Hajgato, J.F. Nixon, L. Nyulaszi, J. Phys. Chem. A 108, 7440 (2004)

    Article  Google Scholar 

  • N. Heinrich, W. Koch, G. Frenking, Chem. Phys. Lett. 124, 20 (1986)

    Article  Google Scholar 

  • A. Pelc, W. Sailer, P. Scheier, M. Probst, N.J. Mason, E. Illenberger, T.D. Märk, Chem. Phys. Lett. 361, 277 (2002)

    Article  Google Scholar 

  • J.W. Shin, N.I. Hammer, M.A. Johnson, H. Schneider, A. Glob, J.M. Weber, J. Phys. Chem. A (2005)

  • V. Périquet, A. Moreau, S. Carles, J.P. Schermann, C. Desfrançois, J. Electr. Spectr. Rel. Phenom. 106, 141 (2000)

    Article  Google Scholar 

  • K.T. No, O.Y. Kwon, S.Y. Kim, M.S. Jhon, H.A. Scheraga, J. Phys. Chem. 99, 3478 (1995)

    Article  Google Scholar 

  • R. Ludwig, F. Weinhold, T.C. Farrar, J. Chem. Phys. 103, 3636 (1995)

    Article  Google Scholar 

  • M.C. Bellissent-Funel, S. Nasr, L. Bosio, J. Chem. Phys. 106, 7913 (1997)

    Article  Google Scholar 

  • C.N. Tam, P. Bour, J. Eckert, F.R. Trouw, J. Phys. Chem. A 101, 5877 (1997)

    Article  Google Scholar 

  • K.P. Sagarik, R. Ahlrichs, J. Phys. Chem. 86, 5117 (1987)

    Article  Google Scholar 

  • S. Suhai, J. Chem. Phys. 103, 7030 (1995)

    Article  Google Scholar 

  • S. Suhai, J. Phys. Chem. 100, 3950 (1996)

    Article  Google Scholar 

  • E. Cabaleiro-Lago, M.A. Rios, J. Chem. Phys. 110, 6782 (1999)

    Article  Google Scholar 

  • J.B. Foresman, A. Frisch, Exploring Chemistry with Electronic Structure methods (Gauusian, Inc, Pittsburg, US, 1996)

  • C. Desfrançois, H. Abdoul-Carime, J.P. Schermann, Int. J. Mod. Phys. 10, 1339 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Schermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seydou, M., Modelli, A., Lucas, B. et al. Electron attachment to strongly polar clusters. Eur. Phys. J. D 35, 199–205 (2005). https://doi.org/10.1140/epjd/e2005-00089-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2005-00089-5

Keywords

Navigation