Skip to main content
Log in

Quantum error correction of coherent errors by randomization

  • Quantum Optics and Quantum Information
  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

A general error correction method is presented which is capable of correcting coherent errors originating from static residual inter-qubit couplings in a quantum computer. It is based on a randomization of static imperfections in a many-qubit system by the repeated application of Pauli operators which change the computational basis. This Pauli-Random-Error-Correction (PAREC)-method eliminates coherent errors produced by static imperfections and increases significantly the maximum time over which realistic quantum computations can be performed reliably. Furthermore, it does not require redundancy so that all physical qubits involved can be used for logical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge UP, 2000)

  • D. Deutsch, Proc. Roy. Soc. Lond. A 400, 97 (1985)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • P.W. Shor, In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, edited by S. Goldwasser (IEEE Computer Society, Los Alamitos, CA, 1994), p. 124

  • L.K. Grover, Phys. Rev. Lett. 79, 325 (1997)

    ADS  Google Scholar 

  • S. Lloyd, Science 273, 1073 (1996)

    ADS  MathSciNet  Google Scholar 

  • R. Schack, Phys. Rev. A 57, 1634 (1998); B. Georgeot, D.L. Shepelyansky, Phys. Rev. Lett. 86, 2890 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  • W.H. Zurek, Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  • For a comprehensive list of pioneering work on quantum error correction see, e.g., reference Nielsen00

  • For some more recent developments see, e.g., G. Alber, Th. Beth, Ch. Charnes, A. Delgado, M. Grassl, M. Mussinger, Phys. Rev. Lett. 86, 4402 (2001); Ch. Ahn, H.M. Wiseman, G.J. Milburn, Phys. Rev. A 67, 052310 (2003); A.M. Steane, preprint arXiv:quant-ph/0304016; E. Knill, preprint arXiv:quant-ph/0404104

    Article  Google Scholar 

  • B. Georgeot, D.L. Shepelyansky, Phys. Rev. E 62, 3504 (2000); B. Georgeot, D.L. Shepelyansky, Phys. Rev. E 62, 6366 (2000)

    Article  ADS  Google Scholar 

  • G. Benenti, G. Casati, S. Montangero, D.L. Shepelyansky, Phys. Rev. Lett. 87, 227901 (2001)

    ADS  Google Scholar 

  • K.M. Frahm, R. Fleckinger, D.L. Shepelyansky, Eur. Phys. J. D 29, 139 (2004)

    Article  ADS  Google Scholar 

  • S.-J. Chang, K.-J. Shi, Phys. Rev. A 34, 7 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  • F.M. Izrailev, Phys. Rep. 196, 299 (1990)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Alber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kern, O., Alber, G. & Shepelyansky, D. Quantum error correction of coherent errors by randomization. Eur. Phys. J. D 32, 153–156 (2005). https://doi.org/10.1140/epjd/e2004-00196-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2004-00196-9

Keywords

Navigation