Skip to main content
Log in

Contribution of ion emission to sputtering of uranium dioxide by highly charged ions

Monomers and cluster size distributions

  • Atomic Physics
  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

Measurements of the cluster size (n) distribution of secondary (UOx)+n ions from sputtering of uranium dioxide (UO2) by Ne8+, Ar8+ and Xeq+ ions (q=10, 23) at fixed kinetic energy (81 keV) have been performed with a time-of-flight mass spectrometer. The cluster ion yields Y follow a power law Y(n)∼nδ with -2.1<δ<-1.5. This is in contrast to a statistical recombination of the constituents upon ejection, but in agreement with the predictions of collective ejection models. Such a power law was also observed in the electronic stopping regime with MeV/u ions. The exponent δ is found to decrease with increasing projectile mass (and thus total sputter yield) at fixed kinetic energy. The ratio of emitted ionic clusters to monomers varies from 3 to 4.5 depending on the projectile. The contribution of positive ions to the total sputtering yield amounts to about 0.03%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Fundamental Processes in Sputtering of Atoms and Molecules, edited by P. Sigmund, K. Dan. Vid. Selsk. Mat. Fys. Medd. 43, 1 (1993)

    Google Scholar 

  • G. Betz, K. Wien, Int. J. Mass Spectrom. Ion Proc. 140, 1 (1994)

    Google Scholar 

  • R. Baragiola, Phil. Trans. R. Soc. Lond. A 362, 29 (2004)

    Google Scholar 

  • P. Sigmund, Phys. Rev. 184, 383 (1969)

    Article  Google Scholar 

  • P. Sigmund, C. Clausen, J. Appl. Phys. 52, 2 (1981)

    Google Scholar 

  • T. Schenkel, A.V. Hamza, A.V. Barnes, D.H. Schneider, Progr. Surf. Sci. 61, 23 (1999), and references therein

    Article  Google Scholar 

  • T. Neidhard, F. Pichler, F. Aumayr, Hp. Winter, M. Schmidt, P. Varga, Phys. Rev. Lett. 74, 5280 (1995)

    Article  Google Scholar 

  • M. Toulemonde, W. Assmann, C. Trautmann, F. Grüner, H.D. Mieskes, H. Kucal, Z.G. Wang, Nucl. Instrum. Meth. B 212, 346 (2003)

    Google Scholar 

  • N. Itoh, T. Nakayama, Nucl. Instr. Meth. B 13, 550 (1986)

    Google Scholar 

  • F. Seitz, J.S. Koehler, in Solid State Physics, edited by F. Seitz, D. Turnbull (Academic Press, New York, 1956), Vol. 2, p. 307

  • R.L. Fleischer, P.B. Price, R.M. Walker, Nuclear tracks in Solids: Principles and Applications (University of California Press, Berkeley, 1975)

  • A. Wucher, M. Wahl, Nucl. Instrum. Meth. B 115, 581 (1996)

    Google Scholar 

  • A.V. Hamza, T. Schenkel, A.V. Barnes, Eur. Phys. J. D 6, 83 (1999)

    Article  Google Scholar 

  • L.E. Rehn, R.C. Birtcher, S.E. Donnelly, P.M. Baldo, L. Funk, Phys. Rev. Lett. 87, 207601 (2001)

    Article  Google Scholar 

  • S. Schlutig, thesis, University of Caen (2001)

  • S. Bouffard, J.P. Duraud, M. Mosbah, S. Schlutig, Nucl. Instrum. Meth. B 141, 372 (1998)

    Google Scholar 

  • F. Haranger, thesis, University of Caen (2003) (available from the authors on request)

  • B. Ban-d’Etat, F. Haranger, Ph. Boduch, S. Bouffard, H. Lebius, L. Maunoury, J.Y. Pacquet, H. Rothard, C. Clerc, F. Garrido, L. Thomé, R. Hellhammer, Z. Pešić, N. Stolterfoht, Phys. Scripta T 110, 389 (2004)

    Article  Google Scholar 

  • L. Maunoury, R. Leroy, T. Been, G. Gaubert, L. Guillaume, D. Leclerc, A. Lepoutre, V. Mouton, J.Y. Pacquet, J.M. Ramillon, R. Vicquelin, the GANIL Ion Production Group, Rev. Sci. Instrum. 73, 561 (2002)

    Article  Google Scholar 

  • M. Caron et al., Nucl. Instrum. Meth. B 146, 126 (1998)

    Google Scholar 

  • I.S. Gilmore, M.P. Seah, Int. J. Mass Spectrom. 202, 217 (2000)

    Article  Google Scholar 

  • C. Staudt, A. Wucher, Phys. Rev. B 66, 075419 (2002)

    Article  Google Scholar 

  • S. Della-Negra et al., J. Phys. France 48, 261 (1987)

    Google Scholar 

  • H.M. Urbassek, Nucl. Instrum. Meth. B 31, 541 (1988)

    Google Scholar 

  • I.S. Bitensky, E.S. Parilis, Nucl. Instrum. Meth. B 21, 26 (1987)

    Google Scholar 

  • http://www.srim.org, based on The Stopping and Range of Ions in Solids, edited by J.F. Ziegler, J.P. Biersack, U. Littmark (Pergamon Press, New York, 1985) (new edition in 2003)

  • M.H. Shapiro, T.A. Tombrello, Nucl. Instrum. Meth. B 152, 221 (1999)

    Google Scholar 

  • I.C. Gebeshuber, S. Cernusca, F. Aumayr, Hp. Winter, Nucl. Instrum. Meth. B 205, 751 (2003)

    Google Scholar 

  • T. Jalowy, Th. Weber, R. Dörner, L. Farenzena, V. Collado, E.F. Da Silveira, H. Schmidt-Böcking, K.O. Groeneveld, Int. J. Mass Spectrom. 231, 51 (2004)

    Google Scholar 

  • T. Jalowy, R. Neugebauer, M. Hattass, J. Fiol, F. Afaneh, J.A.M. Pereira, V. Collado, E.F. Da Silveira, H. Schmidt-Böcking, K.O. Groeneveld, Nucl. Instrum. Meth. B 193, 762 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Rothard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boudjadar, S., Haranger, F., Jalowy, T. et al. Contribution of ion emission to sputtering of uranium dioxide by highly charged ions. Eur. Phys. J. D 32, 19–24 (2005). https://doi.org/10.1140/epjd/e2004-00150-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2004-00150-y

Keywords

Navigation