Skip to main content
Log in

Novel silicon-carbon fullerene-like cages

A class of \(\mathsf{sp^{3}-sp^{2}}\) covalent-ionic hybridized nanosystems

  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

A class of highly symmetric silicon carbide fullerene-like cage nanoclusters with carbon atoms inside the Si20 cage and with high stability are presented. The Generalized Gradient Approximation of Density Functional Theory (GGA-DFT) is used to study the electronic and geometric structure properties of these structures and full geometry optimizations are performed with an all electron 6-311G** basis set. The stability of the clusters is found to depend on the geometrical arrangements of the carbon atoms inside the clusters and the partly ionic nature of the bonding. Possibilities of extending these structures into a larger class of nanostructures are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clusters of Atoms and Molecules, edited by H. Haberland (Springer-Verlag, Berlin, 1994)

  2. U. Naher, S. Bjornholm, S. Frauendorf, F. Garcias, C. Guet, Phys. Rep. 285, 245 (1997)

    Article  Google Scholar 

  3. S. Bjornholm, J. Borggreen, Philos. Mag. B 79, 1321 (1999)

    Google Scholar 

  4. P. Jena, S.N. Khanna, B.K. Rao, Theory of Atomic and Molecular Clusters (Springer-Verlag, Berlin, 1999)

  5. N.E. Frick, M.S. thesis, The University of Texas at Arlington, May, 2002 and references therein; N.E. Frick, A.S. Hira, A.K. Ray, to be published

  6. H. Hiura, T. Miyazaki, T. Kanayama, Phys. Rev. Lett. 86, 1733 (2001); T. Miyazaki, H. Hiura, T. Kanayama, Phys. Rev. B 66, 121403 (R) (2002)

    Article  Google Scholar 

  7. A. Szabo, N.S. Ostlund, Modern Quantum Chemistry (Macmillan, New York, 1982)

  8. W.J. Hehre, P.V.R. Schleyer, J.A. Pople, Ab Initio Molecular Orbital Theory (Wiley, New York, 1982)

  9. R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989)

  10. L.R. Marim, M.R. Lemes, A. Dal Pino Jr, J. Mol. Struct. (Theochem) 663, 159 (2003)

    Article  Google Scholar 

  11. K.-M. Ho, A.A. Shvartsburg, B. Pan, Z.-Y. Lu, C.-Z. Wang, J.G. Wacker, J.L. Fye, M.F. Jarrold, Nature 392, 582 (1998)

    Article  Google Scholar 

  12. B.-X. Li, P.-L. Cao, D.-L. Que, Phys. Rev. B 61, 1685 (2000)

    Article  Google Scholar 

  13. M. Menon, J. Chem. Phys. 114, 7731 (2001)

    Article  Google Scholar 

  14. G.V. Helden, M.T. Hsu, N.G. Gotts, M.T. Bowers, J. Phys. Chem. 97, 8182 (1993)

    Google Scholar 

  15. M.F. Jarrold, Nature 407, 26 (2000)

    Article  Google Scholar 

  16. K. Jackson, B. Nellermoe, Chem. Phys. Lett. 254, 249 (1996)

    Article  Google Scholar 

  17. V. Kumar, Y. Kawazoe, Phys. Rev. Lett. 87, 45503 (2001); Phys. Rev. B 65, 73404 (2002)

    Article  Google Scholar 

  18. S.N. Khanna, B.K. Rao, P. Jena, Phys. Rev. Lett. 89, 16803 (2002)

    Article  Google Scholar 

  19. C. Xiao, F. Hagelberg, W.A. Lester, Phys. Rev. B 66, 075425 (2002)

    Article  Google Scholar 

  20. V.D. Gordon, E.S. Nathan, A.J. Apponi, M.C. McCarthy, P. Thaddeus, P. Botschwina, J. Chem. Phys. 113, 5311 (2000)

    Article  Google Scholar 

  21. J. Cernicharo, C.A. Gottlieb, M. Guélin, P. Thaddeus, J.M. Vrtilek, Astrophys. J. 341, L25 (1989); M. Ohishi, N. Kaifu, K. Kawaguchi, A. Murakami, S. Saito, S. Yumamoto, S.-I. Ishikawa, Y. Fujitu, Y. Shiratori, W.M. Irvine, Astrophys. J. 34, L83 (1989)

  22. S. Hunsicker, R.O. Jones, J. Chem. Phys. 105, 5048 (1996)

    Article  Google Scholar 

  23. S. Osawa, M. Harada, E. Osawa, Fullerene Sci. Tech. 3, 225 (1995)

    Google Scholar 

  24. Q. Sun, Q. Wang, P. Jena, B.K. Rao, Y. Kawazoe, Phys. Rev. Lett. 90, 135503 (2003)

    Article  Google Scholar 

  25. C. Ray, M. Pellarin, J.L. Lermé, J.L. Vialle, M. Broyer, X. Blasé, P. Mélinon, P. Kéghélian, A. Perez, Phys. Rev. Lett. 80, 5365 (1998); M. Pellarin, C. Ray, J.L. Lermé, J.L. Vialle, M. Broyer, X. Blase, P. Kéghélian, P. Mélinon, A. Perez, J. Chem. Phys. 110, 6927 (1999)

    Article  Google Scholar 

  26. W. Branz, I.M.L. Billas, N. Malinowski, F. Tast, M. Heinebrodt, T.P. Martin, J. Chem. Phys. 109, 3425 (1998)

    Article  Google Scholar 

  27. D. Connetable, V. Timoshevskii, E. Artacho, X. Blasé, Phys. Rev. Lett. 87, 206405-1 (2001)

    Article  Google Scholar 

  28. M.N. Huda, A.K. Ray, Phys. Rev. A 69, 011201(R) (2004); Virtual J. of Nanoscale Science and Technology, Feb. 9, 2004

    Article  Google Scholar 

  29. I. Rata, A.A. Shavartsburg, M. Horoi, T. Frauenheim, K.W.M. Siu, K.A. Jackson, Phys. Rev. Lett. 85, 546 (2000); V. Kumer, Bull. Mater. Sci. 26, 109 (2003)

    Article  Google Scholar 

  30. J.P. Perdew, K. Burke, Y. Wang, Phys. Rev. B 54, 16533 (1996); J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  Google Scholar 

  31. Gaussian 98 (Revision A.1), M.J. Frisch et al. , Gaussian Inc., Pittsburgh PA, 1998

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Ray.

Additional information

Received: 1 August 2004, Published online: 28 September 2004

PACS:

73.22.-f Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huda, M.N., Ray, A.K. Novel silicon-carbon fullerene-like cages. Eur. Phys. J. D 31, 63–68 (2004). https://doi.org/10.1140/epjd/e2004-00128-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2004-00128-9

Keywords

Navigation