Skip to main content
Log in

Abstract.

A new Coulomb distorted-wave method with coupled-channel target functions is used to calculate total ionization cross-sections for helium in positron collisions. Besides Slater-like orbitals we use regular Coulomb wave packets in our configurational interaction basis to describe the target continuum. The incident positron energy was varied between the ionization threshold and 500 a.u. The results are in good agreement with experimental data and other theoretical calculations. Comparing to other sophisticated distorted wave methods our model is much easier to implement and gives accurate results. As a new feature we present ionization cross-sections where the He + ion remains in the 1s ground state or excited to the 2s or 2p state. As we know there are no experimental work done to determine such cross-sections. In the case of ionization followed by 2s or 2p excitation we compared our results with other calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Fromme, G. Kruse, W. Raith, G. Sinapius, Phys. Rev. Lett. 57, 3031 (1986)

    Article  Google Scholar 

  2. H. Knudsen, L. Brun-Nielsen, M. Charlton, M.R. Poulsen, J. Phys. B: At. Mol. Opt. Phys. 23, 3955 (1990)

    Article  Google Scholar 

  3. S. Mori, O. Sueoka, J. Phys B: At. Mol. Opt. Phys. 27, 4349 (1994)

    Article  Google Scholar 

  4. M.F. Jacobsen, N.P. Frandsen, H. Knudsen, U. Mikkelson, D.M. Schrader, J. Phys. B: At. Mol. Opt. Phys. 28, 4691 (1995)

    Article  Google Scholar 

  5. J. Moxom, P. Ashley, G. Lariccia, Can. J. Phys. 74, 367 (1996)

    Google Scholar 

  6. M. Basu, P.S. Mazumdar, A.S. Ghosh, J. Phys. B: At. Mol. Opt. Phys. 18, 369 (1985)

    Article  Google Scholar 

  7. P.R. Schultz, R.E. Olson, Phys. Rev A. 38, 1866 (1988)

    Article  Google Scholar 

  8. Z. Chen, A.Z. Msezane, Phys. Rev. A 49, 1752 (1993)

    Article  Google Scholar 

  9. C.P. Campbell, M.T. McAlinden, A.A. Keroghan, H.R.J. Walters, Nucl. Instrum. Meth. B 143, 41 (1998)

    Article  Google Scholar 

  10. L.D. Moores, Nucl. Instrum. Meth. B 179, 316 (2001)

    Article  Google Scholar 

  11. R.I. Campeanu, R.P. McEachron, A.D. Stauffer, Nucl. Instrum. Meth. B 192, 146 (2002)

    Article  Google Scholar 

  12. I.F. Barna, N. Grün, W. Scheid, Eur. Phys. J. D 25, 239 (2003)

    Article  Google Scholar 

  13. I.F. Barna, Doctoral thesis, University Giessen (2002); http://geb.uni-giessen.de/geb/volltexte/2003/1036

  14. I.F. Barna, J.M. Rost, Eur. Phys. J. D 27, 287 (2003)

    Article  Google Scholar 

  15. N. Moiseyev, Phys. Rep. 302, 211 (1998)

    Google Scholar 

  16. N.F. Mott, H.S.W. Massey, The Theory of Atomic Collision, 3rd edn. (Clarendon, Oxford, 1965)

  17. M. Abramowitz, A. Stegun, Handbook of Mathematical Functions (Dover Publications Inc., New York, 1972)

  18. R.I. Campeanu, R.P. McEachran, A.D. Stauffer, Can. J. Phys. 77, 769 (1999)

    Article  Google Scholar 

  19. R.P. McEachran, D.L. Morgan, A.G. Ryman, A.D. Stauffer, J. Phys. B 10, 663 (1977)

    Article  Google Scholar 

  20. L.D. Moores, Nucl. Instrum. Meth. B 143, 105 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. F. Barna.

Additional information

Received: 18 February 2004, Published online: 15 April 2004

PACS:

34.85. + x Positron scattering

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barna, I.F. Ionization of helium in positron collisions. Eur. Phys. J. D 30, 5–9 (2004). https://doi.org/10.1140/epjd/e2004-00050-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2004-00050-2

Keywords

Navigation