Skip to main content
Log in

Abstract.

The charging of small neutral and charged particles suspended in weakly ionized plasma is investigated under the assumption that the Coulomb + image forces give rise to the ion transport in the carrier plasma and define the rate of charging processes. Our approach is based on a BGK version of the kinetic equation [1,2] describing the ion transport in the presence of force fields created by the particle charge and the image force. A special type of the perturbation theory (with respect to the reciprocal Knudsen number) is used for calculating the rate of ion deposition onto neutral and charged particles. As the starting approximation, the free-molecule ion distribution with a floating ion flux is used for evaluating the collision term in the Boltzmann equation. The value of the ion flux as a function of the particle size is then fixed self-consistently from the solution of the Boltzmann equation with the approximated collision term. The expression for the ion flux J(a) to the spherical particle of radius a is derived in the form \(J = \xi(a) J_{fm}\), where J fm is the free-molecule flux (no carrier plasma) and \(\xi(a)\) is a correction factor taking into account the ion-molecular collisions. The latter is shown to never exceed unity and to depend weakly on the particle-ion interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.L. Bhatnagar, E.P. Gross, M. Krook, Phys. Rev. 94, 511 (1954)

    Google Scholar 

  2. M.M.R. Williams, S.K. Loyalka, Aerosol Science, Theory & Practice (Pergamon Press, Oxford, 1991)

  3. P.C. Reist, Introduction to Aerosol Science (Macmillan, New York, 1984)

  4. K.T. Whitby, B.U.H. Liu, Aerosol Science, edited by C.N. Davies (Academic Press, London, 1966)

  5. B.M. Smirnov, Physics of Ionized Gases (Wiley, New York, 2000)

  6. J.M. Hidy, J.R. Brock, The Dynamics of Aerocolloidal Systems (Pergamon Press, Oxford, 1970)

  7. K.T. Whitby, Fine Particles, edited by B.Y.H. Liu (Elsevier, New York, 1976)

  8. B.Y.H. Liu, Fine Particles, Aerosol Generation, Measurement, Sampling, and Analysis (Academic Press, New York, 1976)

  9. B.M. Smirnov, Clusters and Small Particles in Gases and Plasma (Springer, New York, 2000)

  10. B.M. Smirnov, Phys. Usp. 170, 495 (2000)

    Google Scholar 

  11. V.N. Tsytovich, Phys. Usp. 167, 57 (1997)

    Google Scholar 

  12. S.A. Khrapak, A.V. Ivlev, G. Morfill, Phys. Rev. E 64, 046403 (2001)

    Article  Google Scholar 

  13. Electrical Processes in Atmospheres, edited by H. Dolezalek, R. Reiter (D. Steinkopff, Darmstadt, 1977)

  14. G.P. Reischl, J.M. Mäkelä, R. Karch, J. Necid, J. Aerosol Sci. 27, 931 (1996)

    Article  Google Scholar 

  15. F.J. Romay, D.Y.H. Pui, Aerosol Sci. Technol. 17, 134 (1992)

    Google Scholar 

  16. H.Y. Wen, G.P. Reischl, G. Kasper, Aerosol Sci. Technol. 15, 89 (1984)

    Article  Google Scholar 

  17. M. Adachi, K. Okuyama, Y. Kousaka, H. Kozuru, D.Y.H. Pui, Aerosol Sci. Technol. 11, 144 (1989)

    Google Scholar 

  18. M. Smith, K. Lee, T. Matsuokas, J. Nanopart. Res. 1, 185 (1999)

    Article  Google Scholar 

  19. A. Wiedensohler, H.J. Fissan, Aerosol Sci. Technol. 14, 358 (1991)

    Google Scholar 

  20. N.A. Fuchs, Geofis. Pura Appl. 56, 185 (1963)

    Google Scholar 

  21. D. Keefe, P.J. Nolan, J.A. Scott, Proc. R. Ir. Acad. A 66, 2 (1968)

    Google Scholar 

  22. N.A. Fuchs, A.G. Sutugin, Highly Dispersed Aerosols (Ann Arbor, London, 1971)

  23. J.R. Brock, J. Appl. Phys. 41, 843 (1970)

    Article  Google Scholar 

  24. W.H. Marlow, J.R. Brock, J. Colloid Interf. Sci. 50, 32 (1975)

    Google Scholar 

  25. S.W. Davison, J.W. Gentry, Aerosol Sci. Technol. 15, 262 (1984)

    Article  Google Scholar 

  26. W.A. Hoppel, G.M. Frick, Aerosol Sci. Technol. 5, 1 (1986)

    Google Scholar 

  27. D.D. Huang, J.H. Seinfeld, W.H. Marlow, J. Colloid Interf. Sci. 140, 258 (1990)

    Google Scholar 

  28. Y.S. Mayya, J. Colloid Interf. Sci. 140, 185 (1990)

    Google Scholar 

  29. D.Y.H. Pui, S. Fruin, P.H. McMurry, Aerosol Sci Technol. 8, 173 (1988)

    Google Scholar 

  30. G.P. Reischl, H.G. Scheibel, K.H. Becker, J. Aerosol Sci. 15, 47 (1984)

    Article  Google Scholar 

  31. A. Hussin, H.G. Scheibel, K.H. Becker, J. Porstendoerfer, J. Aerosol Sci. 14, 671 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Lushnikov.

Additional information

Received: 29 December 2003, Published online: 15 April 2004

PACS:

36.40.Wa Charged clusters - 82.30.Fi Ion-molecule, ion-ion, and charge-transfer reactions - 92.60.Mt Particles and aerosols

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lushnikov, A.A., Kulmala, M. Charging of aerosol particles in the near free-molecule regime. Eur. Phys. J. D 29, 345–355 (2004). https://doi.org/10.1140/epjd/e2004-00047-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2004-00047-9

Keywords

Navigation