Skip to main content
Log in

High precision description of the rovibronic structure of the I\(\mathsf{_2}\) B-X spectrum

  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

A precise description of the B-X spectrum of the I2 molecule has been developed. All presently available high precision measurements on the B-X spectrum of the I2 molecule in the visible were introduced into a model based on molecular potentials for the two electronic states involved, the transition frequencies being the differences of the energy eigenvalues for the rovibrational levels in those potentials. This approach allows, depending on the quality of the input data, a prediction of iodine lines with a 2\(\sigma\) uncertainty of less than 30 MHz from 514 nm to 815 nm of most bands in that range. In the range between 526 nm to 667 nm, where highly precise systematic measurements exist, a smaller 2\(\sigma\) uncertainty of 3 MHz is achieved. Moreover, a precise local model description of selected bands of the B-X spectrum has been derived from high precision measurements of iodine lines in the near infrared between 778 nm and 815 nm. This approach by using a Dunham parameter description allows to predict lines of these bands with a 1\(\sigma\) uncertainty of less than 200 kHz. All this information including the systematically studied hyperfine structure can be combined in a computer program for predicting the details of the iodine B-X spectrum with high reliability, serving as a convenient tool in spectroscopic calibration tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Gerstenkorn, P. Luc, Atlas du spectre d’absorption de la molecule d’iode, Laboratoire Aimé Cotton, CNRS II, 91405 Orsay (France), 14 000 cm−1-15 600 cm−1 (1978), 15 600 cm−1-17 600 cm−1 (1977), 17 500 cm−1-20 000 cm−1 (1977), S. Gerstenkorn, J. Verges, J. Chevillard, Atlas du spectre d’absorption de la molecule d’iode, Laboratoire Aimé Cotton, CNRS II, 91405 Orsay (France), 11 000 cm−1-14 000 cm−1 (1982)

  2. A. Morinaga, K. Sugiyama, N. Ito, J. Helmcke, J. Opt. Soc. Am. B 6, 1656 (1989)

    Google Scholar 

  3. A. Arie, R.L. Byer, Opt. Comm. 111, 253 (1994)

    Article  Google Scholar 

  4. S. Kremser, B. Bodermann, H. Knöckel, E. Tiemann, Opt. Comm. 110, 708 (1994)

    Article  Google Scholar 

  5. P. Jungner, M.L. Eickhoff, S.D. Swartz, J. Ye, J.L. Hall, SPIE 2378, 22 (1995)

    Google Scholar 

  6. C.S. Edwards, G.P. Barwood, P. Gill, W.R.C. Rowley, Metrologia 36, 41 (1999)

    Article  MATH  Google Scholar 

  7. O. Acef, J.J. Zondy, M. Abed, D.G. Rovera, A.H. Gérard, A. Clairon, Ph. Laurent, Y. Millerioux, P. Juncar, Opt. Comm. 97, 29 (1993)

    Article  Google Scholar 

  8. E. Riis, H.G. Berry, O. Poulsen, S.A. Lee, S.Y. Tang, Phys. Rev. A 33, 3023 (1986)

    Article  Google Scholar 

  9. E. Riis, A.G. Sinclair, O. Poulsen, G.W.F. Drake, W.R.C. Rowley, A.P. Levick, Phys. Rev. A 49, 207 (1994)

    Article  Google Scholar 

  10. T.J. Quinn, Metrologia 40, 103 (2003)

    Article  Google Scholar 

  11. C.J. Sansonetti, J. Opt. Soc. Am. B 14, 1913 (1997)

    Google Scholar 

  12. I. Velchev, R. van Dierendonck, W. Hogervorst, W. Ubachs, J. Mol. Spectr. 187, 21 (1998)

    Article  Google Scholar 

  13. S.C. Xu, R. van Dierendonck, W. Hogervorst, W. Ubachs, J. Mol. Spectrosc. 201, 256 (2000)

    Article  Google Scholar 

  14. B. Bodermann, G, Bönsch, H. Knöckel, A. Nicolaus, E. Tiemann, Metrologia 35, 105 (1998)

    Article  Google Scholar 

  15. B. Bodermann, M. Klug, H. Knöckel, E. Tiemann, T. Trebst, H.R. Telle, Appl. Phys. B 67, 95 (1998)

    Article  Google Scholar 

  16. S.L. Cornish, Y.-W. Liu, I.C. Lane, P.E.G. Baird, G.P. Barwood, P. Taylor, W.R.C. Rowley, J. Opt. Soc. Am. B 17, 6 (2000)

    Google Scholar 

  17. B. Bodermann, M. Klug, U. Winkelhoff, H. Knöckel, E. Tiemann, Eur. Phys. J. D 11, 213 (2000)

    Article  Google Scholar 

  18. H.R. Simonsen, F. Rose, Metrologia 37, 651 (2000)

    Article  Google Scholar 

  19. J. Ye, L. Robertsson, S. Picard, L.-S. Ma, J.L. Hall, IEEE Trans. Instrum. Meas. 48, 544 (1999)

    Article  Google Scholar 

  20. R. Holzwarth, A.Yu. Nevsky, M. Zimmermann, Th. Udem, T.W. Hänsch, J. von Zanthier, H. Walther, J.G. Knight, W.J. Wadsworth, P.St.J. Russell, M.N. Skvortsov, S.N. Bagayev, Appl. Phys. B 73, 269 (2001)

    Google Scholar 

  21. Y. Zhang, J. Ischikawa, F.-L. Hong, Opt. Comm. 200, 209 (2001)

    Article  Google Scholar 

  22. F.-L. Hong, Y. Zhang, J. Ischikawa, A. Onae, H. Matsumoto, Opt. Comm. 212, 89 (2002)

    Article  Google Scholar 

  23. F.-L.Hong, Y. Zhang, J. Ischikawa, A. Onae, H. Matsumoto, J. Opt. Soc. Am B 19, 946 (2002)

    Google Scholar 

  24. H. Kato, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule (Japan Society for the Promotion of Science, 2000)

  25. S. Gerstenkorn, P. Luc, J. Phys. Fr. 46, 867 (1985)

    Google Scholar 

  26. F. Martin, R. Bacis, S. Churassy, J. Verges, J. Mol. Spectrosc. 116, 71 (1986)

    MATH  Google Scholar 

  27. B. Bodermann, H. Knöckel, E. Tiemann, Eur. Phys. J. D 19, 31 (2002)

    Article  Google Scholar 

  28. B. Bodermann, thesis, Hannover (1998)

  29. C.H. Townes, A.L. Schawlow, Microwave Spectroscopy (Dover Publications, New York, 1975)

  30. D. Shiner, J.M. Gilligan, B.M. Cook, W. Lichten, Phys. Rev. A 47, 4042 (1993)

    Article  Google Scholar 

  31. S. Rakowsky, D. Zimmermann, W.E. Ernst, Appl. Phys. B 48, 463 (1989)

    Google Scholar 

  32. H. Rong, S. Grafström, J. Kowalski, G. zu Putlitz, W. Jastrzebski, R. Neumann, Opt. Comm. 100, 268 (1993)

    Article  Google Scholar 

  33. R. Grieser, G. Bönsch, S. Dickopf, G. Huber, R. Klein, P. Merz, A. Nicolaus, H. Schnatz, Z. Phys. A 348, 147 (1994)

    Google Scholar 

  34. S. Gerstenkorn, P. Luc, Rev. Phys. Appl. 14, 791 (1979)

    Google Scholar 

  35. B.A. Palmer, R.A. Keller, Los Alamos Scientific Laboratory, LA-8251-MS Informal Report UC-34a, 1980

  36. R.J. Jones, W.-Y. Cheng, K.W. Holman, L. Chen, J.L. Hall, J. Ye, Appl. Phys. B 74, 597 (2002)

    Article  Google Scholar 

  37. J.Y. Seto, Z. Morbi, F. Charron, S.K. Lee, P.F. Bernath, R.J. Le Roy, J. Chem. Phys. 110, 11756 (1999)

    Article  Google Scholar 

  38. J.Y. Seto, R.J. Le Roy, J. Vergés, C. Amiot, J. Chem. Phys. 113, 3067 (2000)

    Article  Google Scholar 

  39. A. Pashov, W. Jastrzebski, P. Kowalczyk, Comp. Phys. Comm. 128, 622 (2000)

    Article  MATH  Google Scholar 

  40. O. Allard, A. Pashov, H. Knöckel, E. Tiemann, Phys. Rev. A 66, 042503 (2002)

    Article  Google Scholar 

  41. C. Samuelis, E. Tiesinga, T. Laue, M. Elbs, H. Knöckel, E. Tiemann, Phys. Rev. A 63, 012710 (2001)

    Article  Google Scholar 

  42. R.M. Herman, A. Ashgarian, J. Mol. Spectr. 19, 305 (1966)

    Google Scholar 

  43. E. Tiemann, J.F. Ogilvie, J. Mol. Spectr. 165, 377 (1994)

    Article  Google Scholar 

  44. J.K.G. Watson, J. Mol Spectr. 80, 411 (1980)

    Google Scholar 

  45. J.K.G. Watson, J. Mol. Spectr. 217, 157 (2003)

    Article  Google Scholar 

  46. R.J. Le Roy, Y. Huang, J. Mol. Struct. (Theochem) 591, 175 (2002)

    Article  Google Scholar 

  47. R. Bacis, D. Cerny, F. Martin, J. Mol. Spectr. 118, 434 (1986)

    Article  Google Scholar 

  48. S. Gerstenkorn, P. Luc, R.J. Le Roy, Can. J. Phys. 69, 1299 (1991)

    Google Scholar 

  49. S. Gerstenkorn, P. Luc, C. Amiot, J. Phys. 46, 355 (1985)

    Google Scholar 

  50. J.M. Blatt, J. Comput. Phys. 1, 382 (1967)

    MATH  Google Scholar 

  51. F. James, M. Roos, D506 Minuit, Cern library PACKLIB, 1989

  52. H. Schnatz, PTB, private communication (2001)

  53. M. Broyer, J.-C. Lehmann, J. Vigue, J. Phys. Fr. 36, 235 (1975)

    Google Scholar 

  54. Such program is available under the name “IodineSpec” from TOPTICA Corp., www.toptica.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Knöckel.

Additional information

Received: 9 October 2003

PACS:

33.15.Mt Rotation, vibration, and vibration-rotation constants - 33.20.Kf Visible spectra-34.20.Cf Interatomic potentials and forces

B. Bodermann: Present address: Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany.

A supplementary table is only available in electronic form at http: //www.edpsciences.org

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knöckel, H., Bodermann, B. & Tiemann, E. High precision description of the rovibronic structure of the I\(\mathsf{_2}\) B-X spectrum. Eur. Phys. J. D 28, 199–209 (2004). https://doi.org/10.1140/epjd/e2003-00313-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2003-00313-4

Keywords

Navigation