Skip to main content
Log in

Abstract.

The rate of the muon transfer from the 1S-state of muonic protium to neon is calculated in the interval of collision energies from 10-4 eV to 15 eV. The basic idea of the present treatment is to describe the entrance channel of the transfer reaction at large interatomic separations as correctly as possible. Accordingly, the three-body Hamiltonian is written in the Jacobi coordinates of the entrance channel, and a problem of the muon motion in the field of two fixed Coulomb centers is formulated in these coordinates. Its eigenstates are used as a basis in which the three-body wavefunction is expanded. Finally, the radial functions describing the relative motion in the entrance and transfer channels satisfy a set of coupled ordinary differential equations. Its solution allows one to find diagonal S-matrix elements corresponding to the entrance channel and, as a result, to obtain the total transfer cross-section and the amplitude of the elastic scattering. In this approach the description of the entrance channel proves to be free of the well-known defects -- incorrect dissociation limits and spurious long-range interactions. These defects are manifested only in the transfer channel. However, their effect seems to be not very significant because of large energies of the relative motion in this channel (a few keV). The calculation made here with four two-center \(\sigma\)-states taken into account reasonably reproduces the experimental transfer rate measured in liquid hydrogen-neon mixtures. The situation at room temperatures is worse: the theoretical value of the transfer rate exceeds the experimental one by a factor of two. However, the calculation clearly indicates the existence of a well pronounced minimum of the transfer rate at thermal energies. This result corresponds qualitatively to the experimental fact of a strong suppression of the muon transfer at room temperatures. At collision energies of 0.3-0.5 eV a resonant peak in the transfer rate is predicted. It is due to a quasi-steady state in the D-wave. The elastic scattering of muonic protium by neon is also treated. The effect of the electron screening in the entrance channel is studied in detail. It is found to be very significant right up to collision energies of 1-2 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.I. Akhiezer, V.B. Berestetskii, Quantum Electrodynamics (Interscience Publ., N.Y., 1969), Sect. 38.4

  2. K. Pachucki, Phys. Rev. A 60, 3593 (1999)

    Article  Google Scholar 

  3. P. Hauser et al., Proposal for an experiment at Paul Scherrer Institute, Villigen, No. R-98-03.1, 1998

  4. D. Taqqu et al., Hyperf. Interact. 119, 311 (1999)

    Article  Google Scholar 

  5. K. Kodosky, M. Leon, Nuovo Cim. B 1, 41 (1971)

    Google Scholar 

  6. G. Carboni, G. Fiorentini, Nuovo Cim. B 39, 281 (1977)

    Google Scholar 

  7. T.S. Jensen, V.E. Markushin, preprint PSI-PR-99-32 (Paul Scherrer Institute, Villigen, 1999, www.psi.ch)

  8. R.O. Mueller, V.W. Hughes, H. Rosenthal, C.S. Wu, Phys. Rev. A 11, 1175 (1975)

    Article  Google Scholar 

  9. J.S. Cohen, J.N. Bardsley, Phys. Rev. A 23, 46 (1981)

    MATH  Google Scholar 

  10. F. Kottmann et al., Hyperf. Interact. 119, 3 (1999)

    Article  Google Scholar 

  11. H. Anderhub et al., Phys. Lett. 143, 65 (1984)

    Article  Google Scholar 

  12. R. Pohl et al., Hyperf. Interact. 119, 77 (1999)

    Article  Google Scholar 

  13. D. Taqqu, preprint PSI-PR-95-07 (Paul Scherrer Institute, Villigen, 1995, www.psi.ch)

  14. R. Jacot-Guillarmod, Phys. Rev. A 51, 2179 (1995)

    Article  Google Scholar 

  15. G. Fiorentini, G. Torelli, Nuovo Cim. A 36, 317 (1976)

    Google Scholar 

  16. L. Bracci, G. Fiorentini, Nuovo Cim. A 50, 373 (1979)

    Google Scholar 

  17. A. Adamczak et al., At. Data Nucl. Data Tables 62, 255 (1996)

    Article  Google Scholar 

  18. S.S. Gershtein, Sov. Phys. JETP 16, 501 (1963)

    Google Scholar 

  19. S.S. Gershtein, in Proceedings of the International Symposium on Muonic Atoms and Molecules, Ascona, 1993, edited by L.A. Schaler, C. Petitjean (Monte Verita, the Centro Stefano Franscini, Ascona, 1993), p. 169

  20. L. Schellenberg, Muon Cat. Fusion 5/6, 73 (1990/91) and references therein

  21. Yu.S. Sayasov, Helv. Phys. Acta 63, 547 (1990)

    Google Scholar 

  22. Yu.S. Sayasov, Phys. Lett. A 159, 271 (1991)

    Article  Google Scholar 

  23. R.A. Sultanov, S.K. Adhikari, Phys. Rev. A 62, 022509 (2000)

    Article  Google Scholar 

  24. R.A. Sultanov, S.K. Adhikari, J. Phys. B 35, 935 (2002)

    Article  Google Scholar 

  25. S.I. Vinitskiı, L.I. Ponomarev, Sov. J. Part. Nucl. 13, 557 (1982)

    Google Scholar 

  26. K. Kobayashi, T. Ishihara, N. Toshima, Muon Cat. Fusion 2, 191 (1988)

    MATH  Google Scholar 

  27. V.I. Komarov, L.I. Ponomarev, S.Yu. Slavyanov, Spheroidal and Coulomb Spheroidal Functions (Science Publ., Moscow, 1976), Chap. 2, Sects. 3.1-3.3, 3.5 (in Russian)

  28. S.I. Vinitskiı, L.I. Ponomarev, Sov. J. Nucl. Phys. 20, 310 (1974)

    Google Scholar 

  29. A.S. Davydov, Quantum Mechanics, 2nd edn. (Science, Moscow, 1973), Sects. 43, 44, 109, 118 (in Russian)

    Google Scholar 

  30. J.D. Power, Phil. Trans. Roy. Soc. Lond. 274, 663 (1973)

    Google Scholar 

  31. R.J. Damburg, R.Kh. Propin, J. Phys. B 1, 681 (1968)

    Article  Google Scholar 

  32. K. Smith, The Calculation of Atomic Collision Processes (John Wiley & Sons, N.Y., 1971), Sects. 1.4.4, 2.4.1

  33. B.R. Jonson, J. Comput. Phys. 13, 445 (1973)

    MATH  Google Scholar 

  34. D.A. Abramov, S.Yu. Ovchinnikov, E.A. Solov’ev, Phys. Rev. A 42, 6366 (1990)

    Article  Google Scholar 

  35. G. Holzwarth, H.J. Pfeiffer, Z. Phys. A 272, 311 (1975)

    Google Scholar 

  36. A.V. Kravtsov, A.I. Mikhailov, N.P. Popov, J. Phys. B 19, 1323 (1986)

    Article  Google Scholar 

  37. E. Clementi, C. Roetti, At. Data Nucl. Data Tables 14, 177 (1974)

    Google Scholar 

  38. A.A. Radzig, B.M. Smirnov, Parameters of Atoms and Atomic Ions (Energoatomizdat, Moscow, 1986), Sect. 6.1 (in Russian)

  39. V.I. Savichev, R. Blümel, Eur. Phys. J. D 21, 3 (2002)

    Article  Google Scholar 

  40. S. Geltman, Phys. Rev. 90, 808 (1953)

    Article  MATH  Google Scholar 

  41. H.A. Bethe, R.W. Jackiw, Intermediate Quantum Mechanics (W.A. Benjamin Inc., N.Y., 1968), Chap. 14

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Romanov.

Additional information

Received: 9 September 2003, Published online: 2 December 2003

PACS:

34.70. + e Charge transfer - 34.50.-s Scattering of atoms and molecules - 36.10.-k Exotic atoms and molecules (containing mesons, muons, and other unusual particles)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanov, S.V. On the muon transfer from protium to neon. Eur. Phys. J. D 28, 11–38 (2004). https://doi.org/10.1140/epjd/e2003-00305-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2003-00305-4

Keywords

Navigation