Skip to main content
Log in

Laser-induced control of (multichannel) intracluster reactions

The slowest is always the easiest to take

  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

An experimental and theoretical study on the excited Ba\(\cdots\)FCH3(A) photodissociation yield as a function of the excitation laser fluence is reported. Experimentally, it was found that the two-photodissociation channel yields, i.e. the reactive BaF and non-reactive Ba* products, increased exhibiting a similar behaviour, as the laser fluence changed from 0.2 up to ca. 4 mJ/cm2. Beyond this value the BaF yield levels off and the Ba* decreases over the 4-7 mJ/cm2 range. The theoretical simulation of the excited state electron-ion dynamics within the time-dependent density functional theory revealed that the reactive channel dominated the photofragmentation dynamics as it occurs within a femtosecond time scale and became accelerated as the photodissociation laser fluence increased. By contrast, the non-reactive channel only manifested for low laser fluences at the nano/picosecond time regime resulted inactive as the laser fluence increased. A simple scheme to control the dynamics of the intracluster multichannel reaction is suggested in which the slowest the channel the easiest to close it as the excitation laser power increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.N. Zare, Science 279, 1875 (1998)

    Article  Google Scholar 

  2. S.R. Rice, Nature 409, 422 (2000)

    Article  Google Scholar 

  3. S. Shi, A. Woody, H. Rabitz, J. Chem. Phys. 88, 6870 (1988)

    Article  Google Scholar 

  4. M. Shapiro, P.J. Brumer, J. Chem. Phys. 84, 4103 (1986)

    Article  Google Scholar 

  5. M. Shapiro, P.J. Brumer, J. Chem. Phys. 97, 6259 (1992)

    Article  Google Scholar 

  6. L.-C. Zhu, V. Kleiman, X.-N. Li, S.P. Lu, K. Trentelman, R.J. Gordon, Science 70, 77 (1995)

    MATH  Google Scholar 

  7. D. Tannor, S.A. Rice, J. Chem. Phys. 83, 5013 (1985)

    Google Scholar 

  8. T. Baumert, M. Grosser, R. Thalweiser, G. Gerber, Phys. Rev. Lett. 67, 3753 (1991)

    Article  Google Scholar 

  9. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, G. Gerber, Science 282, 919 (1998)

    Article  PubMed  Google Scholar 

  10. C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, S. Vajda, L. Woste, Science 299, 536 (2003)

    Article  Google Scholar 

  11. S. Skowronek, R. Pereira, A. González Ureña, J. Chem. Phys. 107, 1668 (1997)

    Article  Google Scholar 

  12. S. Skowronek, R. Pereira, A. González Ureña, J. Phys. Chem. 101, 7468 (1997)

    Article  Google Scholar 

  13. V. Stert, P. Farmanara, W. Radloff, F. Noack, S. Skowronek, J. Jimenez, A. González Ureña, Phys. Rev. A 59, 1727 (1999)

    Article  Google Scholar 

  14. P. Farmanara, V. Stert, W. Radloff, S. Skowronek, A. González Ureña, Chem. Phys. Lett. 304, 127 (1999)

    Article  Google Scholar 

  15. A. González Ureña, K. Gasmi, J. Jiménez, R.F. Lobo, Chem. Phys. Lett. 352, 369 (2002)

    Article  Google Scholar 

  16. E.K.U. Gross, F.J. Dobson, M. Petersilka, Density Functional Theory (Springer, New York, 1996)

  17. G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002)

    Article  Google Scholar 

  18. While the ionisation laser crosses the molecular beam perpendicularly, the excitation laser intersects the crossing point at an angle of about 5\(^\circ\) with respect to the ionisation laser. Care was taken to achieve complete overlap of the two lasers in the intersection region by using two complementary double-diaphragms at the entrance and the exit window of the detection chamber. Thus, the pump laser beam overlaps totally the packet of complexes that is to be ionised by the probe laser

  19. S. Skowronek, A. González Ureña, in Atomic and Molecular beams: The state of the Art, edited by R. Campargue (Springer, 2000), p. 353

  20. S. Skowronek, A. González Ureña, Progr. React. Kin. Mech. 24, 101 (1999)

    Google Scholar 

  21. The octopus project in aimed at describing by first-principles the electron-ion dynamics in finite and extended systems under the influence of arbitrary time-dependent electromagnetic fields. The program can be freely downloaded from http//:www.tddft.org/programs/octopus. For details see M.A.L. Marques, A. Castro, G.F. Bertsch, A. Rubio, Comp. Phys. Comm. 151, 60 (2003)

    Article  Google Scholar 

  22. A. Castro, M.A.L. Marques, J.A. Alonso, G.F. Bertsch, A. Rubio, Eur. J. Phys. B (in press, 2003)

  23. This technique, first introduced in K. Yabana, G.F. Bertsch, Phys. Rev. B 54, 4484 (1996) for the calculation of linear optical spectra of clusters, does not rely on perturbation theory, and is competitive with implementations in the frequency domain (A. Rubio, J.A. Alonso, X. Blase, L.C. Balbás, S.G. Louie, Phys. Rev. Lett. 77, 247 (1996)

    Article  Google Scholar 

  24. N. Troullier, J. Martins, Phys. Rev. B 43, 1993 (1991). We used the core radii r c =1.4 and 1.29 a.u. for all the s, p pseudopotential components of C and F, respectively. For Ba we used a charged configuration including semicore states (5s 2(r c =1.73) 5p 6(r c =2)). Inclusion of scalar relativistic effects turn out to be crucial for the proper description of the excited state properties of the Ba atom

    Google Scholar 

  25. D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 1196 (1980)

    Article  Google Scholar 

  26. V. Stert, H.H. Ritze, P. Farnamara, W. Radloff, Phys. Chem. Chem. Phys. 3, 3939 (2001)

    Article  Google Scholar 

  27. P. Piecuch, J. Mol. Struct. 503, 436 (1997)

    Google Scholar 

  28. V. Stert, P. Farnamara, H.H. Ritze, W. Radloff, K Gasmi, A. González Ureña, Chem. Phys. Lett. 337, 299 (2000)

    Article  Google Scholar 

  29. A.E. Orel, W.H. Miller, J. Chem. Phys. 70, 4393 (1979)

    Article  Google Scholar 

  30. T. Baumert, V. Engel, C. Meier, G. Gerber, Chem. Phys. Lett. 200, 488 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. González Ureña.

Additional information

Received: 3 July 2003

PACS:

36.40.Jn Reactivity of clusters - 36.40.Qv Stability and fragmentation of clusters - 34.50.Rk Laser-modified scattering and reactions

Rights and permissions

Reprints and permissions

About this article

Cite this article

González Ureña, A., Gasmi, K., Skowronek, S. et al. Laser-induced control of (multichannel) intracluster reactions. Eur. Phys. J. D 28, 193–198 (2004). https://doi.org/10.1140/epjd/e2003-00302-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2003-00302-7

Keywords

Navigation