Skip to main content

Advertisement

Log in

Experimental assessment of temperature in plasma wall interaction

Application to PE and POM

  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

The purpose of this paper is to study the temperature evolution during the interaction of a plasma with an insulating wall in polyethylene ((CH2) n ) and polyoxymethylene ((CH2O) n ). The plasma is initiated by means of a capacitor bank discharge in a copper fuse wire. Due to the energy release the ablation of the insulating wall produces some insulating vapours in addition to the copper vapours corresponding to the wire vaporization. Using neutral copper line intensity ratio assuming a Bo ltzmann distribution we obtain a temperature evolution from \(\sim\)11 000 K to \(\sim\)24 000 K in the first few hundreds microseconds of the discharge. For later times the copper lines are strongly self-absorbed and make impossible the diagnostic in a spectroscopic way. Hence the temperature is deduced from the comparison between the experimental and calculated electrical conductivity. So for the decrease of the current the temperature evolves from \(\sim\)21 000 K down to \(\sim\)6 000 K and depends on the p lasma density. The results and the reliability of the two methods are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Saqib, A.D. Stokes, Characteristics of fuse arcing in different fillers, in Proceedings of the 6th Int. Conf. on Electric Fuses and their Applications, Torino, Italy, 1999, p. 275

  2. A. Wolny, A.D. Stokes, IEE Proc. Gener. Transm. Distrib. 141(4), 263 (1994)

    Article  Google Scholar 

  3. J.M. Lombard, L. Brunet, P. André, E. Duffour, A. Lefort, B. Baschung, Éléments de modélisation des interactions plasma-matière dans un lanceur électrothermique, Axes 2, 13 ISL, Saint Louis, mars 1999

    Google Scholar 

  4. J.M. Lombard, B. Baschung, D. Grune, A. Carrière, P. André, Analysis of ETC or classical manometric closed vessel tests with coupling of thermodynamic equilibrium calculations: combustion rate, energy losses, 19th Int. Symp. of Ballistics, 7-11 May, Interlaken, Switzerland, 2001, p. 171

  5. A.D. Stokes, L.J. Cao, J. Phys. D: Appl. Phys. 22, 1697 (1989)

    Article  Google Scholar 

  6. J.D. Yan, W.B. Hall, M.T.C. Fang, J. Phys. D: Appl. Phys. 33, 1070 (2000)

    Article  Google Scholar 

  7. EZ. Ibrahim, J. Phys. D: Appl. Phys. 13, 2045 (1980)

    Article  Google Scholar 

  8. L. Muller, J. Phys. D: Appl. Phys. 26, 1253 (1993)

    Article  Google Scholar 

  9. L.J. Cao, A.D. Stokes, J. Phys. D: Appl. Phys. 24, 1557 (1991)

    Article  Google Scholar 

  10. L.J. Cao, A.D. Stokes, J. Phys. D: Appl. Phys. 25, 669 (1992)

    Article  Google Scholar 

  11. P. André, W. Bussière, E. Duffour, L. Brunet, J.M. Lombard, IEEE Trans. Magn. 39(1), 197 (2003)

    Article  Google Scholar 

  12. B. Cheminat, Phys. Appl. 24, 277 (1989)

    Google Scholar 

  13. C.B. Ruchti, L. Niemeyer, IEEE Trans. Plasma Sci. PS14(4), 423 (1986)

  14. A.B. Murphy, Phys. Rev. E 48, 3594 (1993)

    Article  Google Scholar 

  15. A.B. Murphy, C.J. Arundell, Plasma Chem. Plasma Process. 14, 451 (1994)

    Google Scholar 

  16. P. André, L. Brunet, W. Bussière, J. Caillard, J.M. Lombard, J.P. Picard, Eur. Phys. J. Appl. Phys. (to be published)

  17. Z. Koalaga, thèse d’université, Université Blaise Pascal, Clermont-Ferrand, France, 1991

  18. W. Lochte-Holtgreven, Evaluation of plasma parameters, Plasma Diagnostics (North-Holland Publishing Company, Amsterdam, 1968), Chap. 3, p. 135

  19. J. Caillard, C. De Izarra, L. Brunet, O. Vallée, P. Gillard, IEEE Trans. Magn. 39(1), 212 (2003)

    Article  Google Scholar 

  20. J.J. Beulens, M.J. de Graaf, D.C. Schram, Plasma Source Sci. Technol. 2, 180 (1993)

    Article  Google Scholar 

  21. W. Hermann, U. Kogelschatz, K. Ragaller, E. Schade, J. Phys. D: Appl. Phys. 7, 607 (1974)

    Article  Google Scholar 

  22. V. Kowalenko, G.A. Clark, J. Phys. D: Appl. Phys. 33, 230 (2000)

    Article  Google Scholar 

  23. A.W. DeSilva, H.J. Kunze, Phys. Rev. E 49, 4448 (1994)

    Article  Google Scholar 

  24. A.W. DeSilva, J.D. Katsouros, Phys. Rev. E 57, 5945 (1998)

    Google Scholar 

  25. P. Kovitya, S.W. Simpson, J. Phys. D: Appl. Phys. 17, 1829 (1984)

    Article  Google Scholar 

  26. P. Kovitya, J.J. Lowke, J. Phys. D: Appl. Phys. 18, 53 (1985)

    Article  Google Scholar 

  27. P. André, L. Brunet, E. Duffour, J.M. Lombard, Eur. Phys. J. Appl. Phys. 17, 53 (2002)

    Article  Google Scholar 

  28. Y. Itikawa, M. Hayashi, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, J. Phys. Chem. Ref. Data 15(5), 985 (1986)

    Google Scholar 

  29. S. Trajmar, W. Williams, S.K. Srivastava, J. Phys. B. Molec. Phys. 10(16) 3323 (1977)

    Google Scholar 

  30. A.Z. Msezane, R.J.W. Henry, Phys. Rev. A 33, 1631 (1986)

    Article  Google Scholar 

  31. B. Chervy, O. Dupont, A. Gleizes, P. Krenek, J. Phys. D: Appl. Phys. 28, 2060 (1995)

    Article  Google Scholar 

  32. K.F. Scheibner, A.U. Hazi, R.J.W. Henry, Phys. Rev. A 35, 4869 (1987)

    Article  Google Scholar 

  33. J. Aubreton, thèse d’état, Limoges, France, 1985

  34. R.E. Brown, P.M. McEwan, Undoloid formation and causation of current interruption in current-carrying wires, in Proceedings of the 6th Int. Conf. on Electric Fuses and their Applications, Torino, Italy, 1999, p. 101

  35. P. Graneau, J. Appl. Phys. 53(10), 6648 (1982)

    Article  Google Scholar 

  36. A. Wolny, Effect of fuse element confinement on the rate of rise of fuse arc ignition voltage, in Proceedings of the 6th Int. Conf. on Electric Fuses and their Applications, Torino, Italy, 1999, p. 135

  37. P. André, L. Brunet, IEEE Transact. Plasma Sci. 29(1), 19 (2001)

    Article  Google Scholar 

  38. B. Cheminat, Thèse, Université Blaise Pascal, Clermont-Ferrand, 1983

  39. CRC Hanbook of Chemistry and Physics, 81th edn. (CRC Press inc., 2001)

  40. J. Kohel, L.K. Su, N.T. Clemens, P.L. Varghese, IEEE Trans. Magn. 35(1), 201 (1999)

    Article  Google Scholar 

  41. B. Li, H. Li, Discussion on emission spectroscopy measurements from a dense electrothermal launcher plasma, in Proceedings of the 19th Int. Symp. of Ballistics, May 2001, Interlaken, Switzerland, IB24, p. 203

  42. O.E. Hankins, M.A. Bourham, J. Earnhart, J.G. Gilligan, IEEE Trans. Magn. 29(1), 1158 (1993)

    Article  Google Scholar 

  43. T. Sueda, S. Katsuki, H. Akiyama IEEE Trans. Magn. 33(1), 334 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Bussière.

Additional information

Received: 25 July 2003, Published online: 14 October 2003

PACS:

52.25.Kn Thermodynamics of plasmas - 52.70.Kz Optical (ultraviolet, visible, infrared) measurements - 52.80.Wq Discharge in liquids and solids

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bussière, W., Duffour, E., André, P. et al. Experimental assessment of temperature in plasma wall interaction. Eur. Phys. J. D 28, 79–90 (2004). https://doi.org/10.1140/epjd/e2003-00286-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2003-00286-2

Keywords

Navigation