Skip to main content
Log in

Numerical simulations on the motion of atoms travelling through a standing-wave light field

  • OriginalPaper
  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

The motion of metastable helium atoms travelling through a standing light wave is investigated with a semi-classical numerical model. The results of a calculation including the velocity dependence of the dipole force are compared with those of the commonly used approach, which assumes a conservative dipole force. The comparison is made for two atom guiding regimes that can be used for the production of nanostructure arrays; a low power regime, where the atoms are focused in a standing wave by the dipole force, and a higher power regime, in which the atoms channel along the potential minima of the light field. In the low power regime the differences between the two models are negligible and both models show that, for lithography purposes, pattern widths of 150 nm can be achieved. In the high power channelling regime the conservative force model, predicting 100 nm features, is shown to break down. The model that incorporates velocity dependence, resulting in a structure size of 40 nm, remains valid, as demonstrated by a comparison with quantum Monte-Carlo wavefunction calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Timp, R.E. Behringer, D.M. Tennant, J.E. Cunningham, M. Prentiss, K.K. Berggren, Phys. Rev. Lett. 69, 1636 (1992)

    Article  Google Scholar 

  2. J.J. McClelland, R.E. Scholten, E.C. Palm, R.J. Celotta, Science 262, 877 (1993)

    Google Scholar 

  3. R.W. McGowan, D.M. Giltner, S.A. Lee, Opt. Lett. 20, 2535 (1995)

    Google Scholar 

  4. F. Lison, H.J. Adams, D. Haubrich, M. Kreis, S. Nowak, D. Meschede, Appl. Phys. B 65, 419 (1997)

    Article  Google Scholar 

  5. K.S. Johnson, J.H. Thywissen, N.H. Dekker, K.K. Berggren, A.P. Chu, R. Younkin, M. Prentiss, Science 280, 1583 (1998)

    Article  Google Scholar 

  6. P. Engels, S. Salewski, H. Levsen, K. Sengstock, W. Ertmer, Appl. Phys. B 69, 407 (1999)

    Article  Google Scholar 

  7. D. Meschede, H. Metcalf, J. Phys. D 36, R17 (2003)

  8. K.K. Berggren, M. Prentiss, G.L. Timp, R.E. Behringer, J. Opt. Soc. Am. B 11, 1166 (1994)

    Google Scholar 

  9. J.J. McClelland, J. Opt. Soc. Am. B 12, 1761 (1995)

    Google Scholar 

  10. C.J. Lee, Phys. Rev. A 61, 063604 (2000)

    Article  Google Scholar 

  11. V.G. Minogin, O.T. Serimaa, Opt. Commun. 30, 373 (1979)

    Google Scholar 

  12. Q. Li, B.W. Stenlake, I.C.M. Littler, H.-A. Bachor, K.G.H. Baldwin, D.E. McClelland, Laser Phys. 4, 983 (1994)

    MATH  Google Scholar 

  13. Q. Li, K.G.H. Baldwin, H.-A. Bachor, D.E. McClelland, J. Opt. Soc. Am. B 13, 257 (1996)

    Google Scholar 

  14. S. Nowak, T. Pfau, J. Mlynek, Appl. Phys. B 63, 203 (1996)

    Article  Google Scholar 

  15. R.J. Cook, Phys. Rev. A 20, 224 (1979)

    Article  Google Scholar 

  16. A. Ashkin, Phys. Rev. Lett. 40, 729 (1978)

    Article  Google Scholar 

  17. V.G. Minogin, V.S. Letokhov, Laser light pressure on atoms (Gordon and Breach, New York, 1987)

  18. J. Dalibard, C. Cohen-Tannoudji, J. Opt. Soc. Am. B 2, 1707 (1985)

    Google Scholar 

  19. E. Kyrölä, S. Stenholm, Opt. Commun. 22, 123 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. H. Petra.

Additional information

Received: 11 December 2002, Published online: 29 July 2003

PACS:

02.60.Cb Numerical simulation; solution of equations - 32.80.Lg Mechanical effects of light on atoms, molecules, and ions - 81.16.Rf Nanoscale pattern formation

L. Feenstra: Present address: Physikalisches Institut, Universität Heidelberg, Philosophenweg 12, 69120 Heidelberg, Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petra, S.J.H., Leeuwen, K.A.H.v., Feenstra, L. et al. Numerical simulations on the motion of atoms travelling through a standing-wave light field. Eur. Phys. J. D 27, 83–91 (2003). https://doi.org/10.1140/epjd/e2003-00229-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2003-00229-y

Keywords

Navigation