Skip to main content
Log in

Photodissociation and photoionization of sodium coated C \(_\mathsf{60}\) clusters

  • Original Paper
  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

(C60) m Na n clusters are produced in a tandem laser vaporization source and analyzed by photoionization and photofragmentation time-of-flight mass spectroscopy. At low sodium coverage, the special behavior of (C60) m=1,2Na n clusters \((n\leq 6m)\) is consistent with a significant electron transfer from the first six adsorbed atoms towards each of the C60 fullerenes and an ionic-like bonding in this size range. However, the stability of the (C60)Na3 + cation is found much more pronounced than the one of (C60)Na7 + predicted to be a magic size under the hypothesis of a full charge transfer from the metal atoms to the C60 molecule. When more sodium atoms are present, metal-metal bonds tend to become preponderant and control the cluster properties. Relative to the number of sodium atoms, an odd-even alternation in their stability is explained by the high dissociation rates for even-numbered clusters. The even clusters evaporate neutral sodium atoms whereas odd ones prefer to evaporate Na2 molecules. The hypotheses for the growth of a sodium droplet that does not wet the fullerene surface or for the formation of a concentric metallic layer are discussed in the light of this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fullerenes: Chemistry, Physics, and Technology, edited by K.M. Kadish, R.S. Ruoff (John Wiley & Sons Inc., NewYork, 2000) and references therein

  2. U. Zimmermann, N. Malinowski, A. Burkhardt, T.P. Martin, Carbon 33, 995 (1995)

    Article  Google Scholar 

  3. F. Tast, N. Malinowski, M. Heinebrodt, I.M.L. Billas, T.P. Martin, J. Chem. Phys. 106, 9372 (1997)

    Article  Google Scholar 

  4. U. Zimmermann, N. Malinowski, U. Näher, S. Franck, T.P. Martin, Phys. Rev. Lett. 72, 3542 (1994)

    Article  Google Scholar 

  5. M. Springborg, S. Satpathy, N. Malinowski, U. Zimmermann, T.P. Martin, Phys. Rev. Lett. 77, 1127 (1996)

    Article  Google Scholar 

  6. S. Frank, N. Malinowski, F. Tast, M. Heinebrodt, I.M.L. Billas, T.P. Martin, Z. Phys. D 40, 250 (1997)

    Article  Google Scholar 

  7. P. Mierzyński, K. Pomorski, Eur. Phys. J. D 21, 311 (2002)

    Article  Google Scholar 

  8. A. Rubio, J.A. Alonso, J.M. López, M.J. Stott, Phys. Rev. B 49, 17397 (1994)

    Article  Google Scholar 

  9. P. Weis, R.D. Beck, G. Bräuchle, M.M. Kappes, J. Chem. Phys. 100, 5684 (1994)

    Article  Google Scholar 

  10. T.P. Martin, N. Malinowski, U. Zimmermann, U. Näher, H. Schaber, J. Chem. Phys. 99, 4210 (1993)

    Article  Google Scholar 

  11. D. Östling, A. Rosén, Chem. Phys. Lett. 281, 352 (1997)

    Article  Google Scholar 

  12. D. Östling, A. Rosén, Chem. Phys. Lett. 202, 389 (1993)

    Article  Google Scholar 

  13. U. Zimmermann, A. Burkhardt, N. Malinowski, U. Näher, T.P. Martin, J. Chem. Phys. 101, 2244 (1994)

    Article  Google Scholar 

  14. J. Kohanoff, W. Andreoni, M. Parinello, Chem. Phys. Lett. 198, 472 (1992)

    Article  Google Scholar 

  15. T. Aree, T. Kerdchaoren, S. Hannongbua, Chem. Phys. Lett. 285, 221 (1998)

    Article  Google Scholar 

  16. B. Palpant, A. Otake, F. Hayakawa, Y. Negishi, G.H. Lee, A. Nakajima, K. Kaya, Phys. Rev. B 60, 4509 (1999)

    Article  Google Scholar 

  17. B. Palpant, Y. Negishi, M. Sanetaka, K. Miyajima, S. Nagao, K. Judai, D.M. Rayner, B. Simard, P.A. Hackett, A. Nakajima, K. Kaya, J. Chem. Phys. 114, 8459 (2001)

    Article  Google Scholar 

  18. Ph. Dugourd, R. Antoine, D. Rayane, I. Compagnon, M. Broyer, J. Chem. Phys. 114, 1970 (2001)

    Article  Google Scholar 

  19. A.S. Hira, A.K. Ray, Phys. Rev. A 52, 141 (1995)

    Article  Google Scholar 

  20. A.S. Hira, A.K. Ray, Phys. Rev. A 54, 2205 (1996)

    Article  Google Scholar 

  21. N. Hamamoto, J. Jitsukawa, C. Satoko, Eur. Phys. J. D 19, 211 (2002)

    Article  Google Scholar 

  22. J. Roques, F. Calvo, F. Spiegelman, C. Mijoule, Phys. Rev. Lett. 90, 75505 (2003)

    Article  Google Scholar 

  23. M. Pellarin, C. Ray, J. Lermé, J.L. Vialle, M. Broyer, P. Melinon, J. Chem. Phys. 112, 8436 (2000)

    Article  Google Scholar 

  24. C. Ray, M. Pellarin, J. Lermé, J.L. Vialle, M. Broyer, X. Blase, P. Mélinon, P. Kéghélian, A. Perez, J. Chem. Phys. 110, 6927 (1999)

    Article  Google Scholar 

  25. C. Bréchignac, Ph. Cahuzac, N. Kebaï li, J. Leygnier, A. Sarfati, Phys. Rev. Lett. 68, 3916 (1992)

    Article  Google Scholar 

  26. M.L. Homer, J.L. Persson, E.C. Honea, R.L. Whetten, Z. Phys. D 22, 441 (1991)

    Google Scholar 

  27. M.M. Kappes, M. Schär, U. Röthlisberger, C. Yeretzian, E. Schumacher, Chem. Phys. Lett. 143, 251 (1988)

    Article  Google Scholar 

  28. V. Bonačić-Koutecký, P. Fantucci, J. Koutecký, Phys. Rev. B 37, 4369 (1988)

    Article  Google Scholar 

  29. S. Nagao, Y. Negishi, A. Kato, Y. Nakamura, A. Nakajima, K. Kaya, J. Chem. Phys. 117, 3169 (2002)

    Article  Google Scholar 

  30. Y. Wang, J.M. Holden, X.X. Bi, P.C. Ecklund, Chem. Phys. Lett. 217, 413 (1994)

    Article  Google Scholar 

  31. M. Pellarin, E. Cottancin, J. Lermé, J.L. Vialle, M. Broyer, F. Tournus, B. Masenelli, P. Mélinon, J. Chem. Phys. 117, 3088 (2002)

    Article  Google Scholar 

  32. C. Bréchignac, Ph. Cahuzac, J.Ph. Roux, D. Pavolini, F. Spiegelmann, J. Chem. Phys. 87, 5694 (1987)

    Article  Google Scholar 

  33. C. Bréchignac, Ph. Cahuzac, J. Leygnier, J. Wiener, J. Chem. Phys. 90, 1492 (1989)

    Article  Google Scholar 

  34. V. Bonačić-Koutecký, I. Boustani, M. Guest, J. Koutecký, J. Chem. Phys. 89, 4861 (1988)

    Article  Google Scholar 

  35. D. Rayane, R. Antoine, Ph. Dugourd, E. Bénichou, A.R. Allouche, M. Aubert-Frécon, M. Broyer, Phys. Rev. Lett. 84, 1962 (1999)

    Article  Google Scholar 

  36. From different theoretical studies the distance from one adsorbed sodium atom to the fullerene surface is estimated about 2--2.5 Å [x]. This value is larger or of the order of the surface to surface distance between two fullerenes involved in a [2+2] cycloaddition link

  37. M.L. Cohen, M.Y. Chou, W.D. Knight, W.A. de Heer, J. Chem. Phys. 91, 3141 (1987)

    Google Scholar 

  38. I. Compagnon, R. Antoine, D. Rayane, M. Broyer, Ph. Dugourd, Phys. Rev. Lett. 89, 253001 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pellarin.

Additional information

Received: 7 May 2003, Published online: 17 July 2003

PACS:

36.40.Qv Stability and fragmentation of clusters - 36.40.Mr Spectroscopy and geometrical structure of clusters

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pellarin, M., Cottancin, E., Lermé, J. et al. Photodissociation and photoionization of sodium coated C \(_\mathsf{60}\) clusters. Eur. Phys. J. D 25, 31–40 (2003). https://doi.org/10.1140/epjd/e2003-00216-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2003-00216-4

Keywords

Navigation