Skip to main content
Log in

Widely usable interpolation formulae for hyperfine splittings in the 127I2 spectrum

  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract

Based on new systematic high precision measurements of hyperfine splittings in different rovibrational bands of 127I2 in the near infrared spectral range between 778 nm and 816 nm, and the data in the range from 660 nm to 514 nm available from literature, the quantum number dependence of the different hyperfine interaction parameters was reinvestigated. As detailed as possible parameters were re-fitted from the reported hyperfine splittings in literature, considering that the interaction parameters should vary smoothly with the vibrational and rotational quantum numbers, and follow appropriate physical models. This type of consistency has not been sufficiently taken into account by other authors. To our knowledge it is now possible for the first time to separate the hfs contributions of the two electronic states B 3Пo u+ and X 1 Σ + g for optical transitions in a very large wavelength range. New interpolation formulae could be derived for both states, describing the quantum number dependences of the nuclear electric quadrupole. of the nuclear spin-rotation and also of the nuclear spin-spin interactions. Using these new interpolation formulae the hyperfine splittings for the components with the quantum number condition FJ = 0 can be calculated with an uncertainty of ≤30 kHz for transitions in the wavelength range between 514 nm and 820 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.J. Quinn, Metrologia 36, 211 (1999).

    Article  ADS  Google Scholar 

  2. C.J. Borde, G. Gamy. B. Decomps, J.-P. Descoubes, J. Vigue, J. Phys. France 42, 1393 (1981).

    Article  Google Scholar 

  3. C.J. Borde, G. Camy, B. Decomps, Phys. Rev. A 20, 254 (1979).

    Article  ADS  Google Scholar 

  4. F.-L. Hong, J. Ishikawa, Opt. Commun. 183, 101 (2000).

    Article  ADS  Google Scholar 

  5. F.-L. Hong, J. Ye, L.-S. Ma, S. Picard, C.J. Borde, J.L. Hall, J. Opt. Soc. Am. B 18, 379 (2001).

    Article  ADS  Google Scholar 

  6. J. Ye, L. Robertsson, S. Picard, L.-S. Ma, J.L. Hall, IEEE Trans. Instrum. Meas. 48, 544 (1999).

    Article  Google Scholar 

  7. M.L. Eickhoff, J.L. Hall, IEEE Trans. Instrum.. Meas. 44, 155 (1995).

    Article  Google Scholar 

  8. C.S. Edwards, G.P. Barwood, P. Gill, F. Rodriguez-Llorente, W.R.C. Rowley, Opt. Commun. 132, 94 (1996).

    Article  ADS  Google Scholar 

  9. S. Kremser, B. Bodermann. H. Knockel, E. Tiemann, Opt. Commun. 110, 708 (1994).

    Article  ADS  Google Scholar 

  10. C.S. Edwards, G.P. Barwood, P. Gill, W.R.C. Rowley, Metrologia 36, 41 (1999).

    Article  ADS  Google Scholar 

  11. A. Razet, J. Gagnière, P. Juncar, Metrologia 30, 61 (1993).

    Article  ADS  Google Scholar 

  12. H.R. Simonsen, IEEE Trans. Instrum. Meas. IM46, 141 (1997).

    Article  Google Scholar 

  13. S. Gerstenkorn, P. Luc, Atlas du spectre d’absorption de la molécule d’iode, Laboratoire Aimé Cotton, CNRS II, 91405 Orsay (France), 14000 cm−1–15 600 cm−1 (1978), 15 600 cm−1–17 600 cm−1 (1977), 17 500 cm−1–20 000 cm−1 (1977); S. Gerstenkorn, J. Vergès, J. Chevillard, Atlas du spectre d’absorption de la molécule d’iode, Laboratoire Aimé Cotton, CNRS II, 91405 Orsay (France), 11000 cm−1–14000 cm−1 (1982).

  14. S. Gerstenkorn, P. Luc, J. Phys. France 46, 867 (1985).

    Article  Google Scholar 

  15. I. Velchev, R. van Dierendonck, W. Hogervorst, W. Ubachs, J. Mol. Spectrosc. 187, 21 (1998).

    Article  ADS  Google Scholar 

  16. S.C. Xu, R. van Dierendonck, W. Hogervorst, W. Ubachs, J. Mol. Spectrosc. 201, 256 (2000).

    Article  ADS  Google Scholar 

  17. M. Broyer, J. Vigué, J.C. Lehmann, J. Phys. France 39, 591 (1978).

    Article  Google Scholar 

  18. J. Vigué, M. Broyer, J.C. Lehmann, Phys. Rev. Lett. 42, 883 (1979).

    Article  ADS  Google Scholar 

  19. J.P. Pique, F. Hartmann, S. Churassy. R. Bacis, J. Phys. France 47, 1909 (1986) (part I), 1917 (part II).

    Article  Google Scholar 

  20. M. Gläser, PTB-Bericht, PTP-Opt-25 (1987).

  21. V. Spirko, J. Blabla, J. Mol. Spectrosc. 129, 59 (1988).

    Article  ADS  Google Scholar 

  22. A. Morinaga, K. Sugiyama, N. Ito, J. Helmcke, J. Opt. Soc. Am. B 6, 1656 (1989).

    Article  ADS  Google Scholar 

  23. A. Arie, R.L. Byer, Opt. Commun. 111, 253 (1994).

    Article  ADS  Google Scholar 

  24. A. Razet, S. Picard, Metrologia 33, 19 (1996), and references therein.

    Article  ADS  Google Scholar 

  25. A. Razet, S. Picard, Metrologia 34, 181 (1997), and references therein.

    Article  ADS  Google Scholar 

  26. A. Yokozeki, J.S. Muenter, J. Chem. Phys. 72, 37966 (1980).

    Article  ADS  Google Scholar 

  27. J.-P. Wallerand, F. duBurck, B. Merrier, A.N. Goncharov, M. Himbert; Ch.J. Bordé, Eur. Phys. J. D 6, 63 (1999).

    ADS  Google Scholar 

  28. H. Knöckel, S. Kremser, B. Bodermann, E. Tiemann, Z. Phys. D 37, 43 (1996).

    Article  ADS  Google Scholar 

  29. P. Gill, J.A. Clancy, J. Phys. E: Sci Instrum. 21, 213(1988).

    Article  ADS  Google Scholar 

  30. S. Churassy, G. Grenet, M.L, Gaillard, R. Bacis, Opt. Commun. 30, 41 (1997).

    Article  ADS  Google Scholar 

  31. J.B. Koffend, S. Goldstein, R. Bacis, R.W. Field, S. Ezekiel, Phys. Rev. Lett. 41, 1040 (1978).

    Article  ADS  Google Scholar 

  32. H. Belaidi, M. Himbert, Y. Millerioux, A. Razet, P. Juncar, IEEE Trans. Instr. Meas. 44, 461 (1995).

    Article  Google Scholar 

  33. R.P. Hackel, S. Ezekiel, Phys. Rev. Lett. 42, 1736 (1979).

    Article  ADS  Google Scholar 

  34. J.B. Koffend, Ph.D. thesis, M.I.T., Cambridge, Mass, 1978.

  35. R.P. Hackel, K.H. Castleton, S.G. Kugolich, S. Ezekiel, Phys. Rev. Lett. 35, 568 (1975).

    Article  ADS  Google Scholar 

  36. J.P. Pique, F. Hartmann, R. Bacis, S. Churassy, Opt. Commun. 36, 354 (1981).

    Article  ADS  Google Scholar 

  37. R. Bacis, M. Broyer, S. Churassy, J. Vergès, J. Vigué, J. Chem. Phys. 73, 2641 (1980).

    Article  ADS  Google Scholar 

  38. M. Wakasugi, T. Horiguchi, M. Koizumi, Y. Yoshizawa, J. Opt. Soc. Am. B 5, 2298 (1988).

    Article  ADS  Google Scholar 

  39. J. Vigué, M. Broyer, J.C. Lehmann, J. Phys. France 42, 937 (1981) (parts I-III).

    Article  Google Scholar 

  40. E. Martínez, M.T. Martínez, F. Castano, J. Mol. Spec-trosc. 128, 554 (1988).

    Article  ADS  Google Scholar 

  41. F. Bertinetto, P. Cordiale, S. Fontana, G.B. Picotto, IEEE Trans. Instr. Meas. IM-36, 609 (1987).

    Google Scholar 

  42. W.-Y. Cheng, J.-T. Shy, T. Lin, Opt. Commun. 156, 170 (1998).

    Article  ADS  Google Scholar 

  43. C.J. Bordé, private communication, 2001.

  44. H. Knöckel, B. Bodermann, E. Tiemann, to be published.

  45. See www.toptica.com.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodermann, B., Knöckel, H. & Tiemann, E. Widely usable interpolation formulae for hyperfine splittings in the 127I2 spectrum. Eur. Phys. J. D. 19, 31–44 (2002). https://doi.org/10.1140/epjd/e20020052

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e20020052

PACS

Navigation