Advertisement

New realizations of Lie algebra kappa-deformed Euclidean space

  • S. Meljanac
  • M. Stojić
Theoretical Physics

Abstract

We study Lie algebra κ-deformed Euclidean space with undeformed rotation algebra SOa(n) and commuting vectorlike derivatives. Infinitely many realizations in terms of commuting coordinates are constructed and a corresponding star product is found for each of them. The κ-deformed noncommutative space of the Lie algebra type with undeformed Poincaré algebra and with the corresponding deformed coalgebra is constructed in a unified way.

Keywords

Euclidean Space Hopf Algebra Invariant Operator Star Product Weyl Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Doplicher, K. Fredenhagen, J.E. Roberts, Phys. Lett. B 331, 39 (1994); Commun. Math. Phys. 172, 187 (1995) [hep-th/0303037]MathSciNetCrossRefADSGoogle Scholar
  2. 2.
    N. Seiberg, E. Witten, JHEP 09, 032 (1999) [hep-th/9908142]; J. de Boer, P.A. Grassi, P. van Nieuwenhuizen, Phys. Lett. B 574, 98 (2003) [hep-th/0302078]zbMATHMathSciNetCrossRefADSGoogle Scholar
  3. 3.
    M.R. Douglas, N.A. Nekrasov, Rev. Mod. Phys. 73, 977 (2001) [hep-th/0106048]CrossRefADSGoogle Scholar
  4. 4.
    R.J. Szabo, Phys. Rept. 378, 207 (2003) [hep-th/0109162]zbMATHCrossRefADSGoogle Scholar
  5. 5.
    P. Aschieri, B. Jurco, P. Schupp, J. Wess, Nucl. Phys. B 651, 45 (2003) [hep-th/0205214]; P. Aschieri, C. Blohmann, M. Dimitrijević, F. Meyer, P. Schupp, J. Wess, Class. Quant. Grav. 22, 3511 (2005) [hep-th/0504183]zbMATHMathSciNetCrossRefADSGoogle Scholar
  6. 6.
    J. Lukierski, A. Nowicki, H. Ruegg, V.N. Tolstoy, Phys. Lett. B 264, 331 (1991)MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    J. Lukierski, A. Nowicki, H. Ruegg, Phys. Lett. B 293, 344 (1992)zbMATHMathSciNetCrossRefADSGoogle Scholar
  8. 8.
    J. Lukierski, H. Ruegg, Phys. Lett. B 329, 189 (1994) [hep- th/9310117]MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    S. Majid, H. Ruegg, Phys. Lett. B 334, 348 (1994) [hep-th/9404107]MathSciNetCrossRefADSzbMATHGoogle Scholar
  10. 10.
    P. Kosiński, P. Maślanka, hep-th/9411033Google Scholar
  11. 11.
    K. Kosiński, J. Lukierski , P. Maślanka, Phys. Rev. D 62, 025004 (2000) [hep-th/9902037]MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    K. Kosiński, J. Lukierski, P. Maślanka, Czech. J. Phys. 50, 1283 (2000) [hep-th/0009120]CrossRefADSzbMATHGoogle Scholar
  13. 13.
    P. Kosiński, J. Lukierski, P. Maślanka, A. Sitarz, hep-th/ 0307038Google Scholar
  14. 14.
    G. Amelino-Camelia, M. Arzano, Phys. Rev. D 65, 084044 (2002) [hep-th/0105120]MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    G. Amelino-Camelia, F. D’Andrea, G. Mandanici, JCAP 0309, 006 (2003) [hep-th/0211022]ADSGoogle Scholar
  16. 16.
    M. Dimitrijević, L. Jonke, L. Möller, E. Tsouchnika, J. Wess, M. Wohlgenannt, Eur. Phys. C 31, 129 (2003) [hep-th/0307149]CrossRefADSzbMATHGoogle Scholar
  17. 17.
    M. Dimitrijević, F. Meyer, L. Möller, J. Wess, Eur. Phys. J. C 36, 117 (2004) [hep-th/0310116]ADSCrossRefGoogle Scholar
  18. 18.
    M. Dimitrijević, L. Möller, E. Tsouchnika, J. Phys. A hep-th/0404224Google Scholar
  19. 19.
    D. Bonatsos, C. Daskaloyannis, Phys. Lett. B 307, 100 (1993); S. Meljanac, M. Mileković, S. Pallua, Phys. Lett. B 328, 55 (1994) [hep-th/9404039]MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    S. Meljanac, M. Mileković, Int. J. Mod. Phys. A 11, 1391 (1996)zbMATHMathSciNetCrossRefADSGoogle Scholar
  21. 21.
    S. Meljanac, A. Perica, Phys. A: Math. Gen. 27, 4737 (1994); S. Meljanac, A. Perica, Mod. Phys. Lett. A 9, 3293 (1994) [hep-th/9409180]; S. Meljanac, A. Perica, D. Svrtan, J. Phys. A 36, 6337 (2003) [math-ph/0304038]MathSciNetCrossRefADSGoogle Scholar
  22. 22.
    S. Meljanac, D. Svrtan, Determinants, math-ph/0304040; S. Meljanac, D. Svrtan, Math. Commum. 1, 1 (1996) [math-ph/0304039]zbMATHMathSciNetGoogle Scholar
  23. 23.
    V. Bardek, S. Meljanac, Eur. Phys. J. C 17, 539 (2000) [hep-th/0009099]; V. Bardek, L. Jonke, S. Meljanac, M. Mi- leković, Phys. Lett. B 531, 311 (2002) [hep-th/0107053]MathSciNetCrossRefADSzbMATHGoogle Scholar
  24. 24.
    S. Meljanac, M. Mileković, M. Stojić, Eur. Phys. J. C 24, 331 (2002) [math-ph/0201061]zbMATHMathSciNetCrossRefADSGoogle Scholar
  25. 25.
    L. Jonke, S. Meljanac, Phys. Lett. B 526, 149 (2002) [hep-th/0106135]zbMATHMathSciNetCrossRefADSGoogle Scholar
  26. 26.
    V.P. Nair, A.P. Polychronakos, Phys. Lett. B 505, 267 (2001) [hep-th/0011172]; L. Jonke, S. Meljanac, Eur. Phys. J. C 29, 433 (2003) [hep-th/0210042]; I. Dadić, L. Jonke, S. Meljanac, Acta Phys. Slovaca 55, 149 (2005) [hep-th/0301066]zbMATHMathSciNetCrossRefADSGoogle Scholar
  27. 27.
    J. Wess, Deformed coordinates spaces; Derivatives, Lecture given at the Balkan workshop BW2003, August 2003, Vrnjačka Banja, Serbia, hep-th/0408080Google Scholar
  28. 28.
    M. Chaichian, P.P. Kulish, K. Nishijima, A. Tureanu, Phys. Lett. B 604, 98 (2004) [hep-th/0408069]; M. Chaichian, P. Presnajder, A. Tureanu, Phys. Rev. Lett. 94, 151602 (2005) [hep-th/0409096]MathSciNetCrossRefADSGoogle Scholar
  29. 29.
    J. Lukierski, M. Woronowicz, hep-th/0508083Google Scholar
  30. 30.
    A. Kempf, G. Mangano, R.B. Mann, Phys. Rev. D 52, 1108 (1995) [hep-th/9412167]; L.N. Chang, D. Minic, N. Okamura, T. Takeuchi, Phys. Rev. D 65, 125027 (2002) [hep-th/0201017]; I. Dadić, L. Jonke, S. Meljanac, Phys. Rev. D 67, 087701 (2003) [hep-th/0210264]MathSciNetCrossRefADSGoogle Scholar
  31. 31.
    V. Kathotia, Int. J. Math. 11, 523 (2000), no. 4 [math.qa/ 9811174]zbMATHMathSciNetGoogle Scholar
  32. 32.
    L. Möller, JHEP 0512, 029 (2005) [hep-th/0409128]; A. Agostini, G. Amelino-Camelia, M. Arzano, F. D’Andrea, hep-th/0407227CrossRefGoogle Scholar
  33. 33.
    L. Freidel, E.R. Livine, “Ponzano–Regge model revisited. III: Feynman diagrams, effective field theory”, hep-th/0502106; L. Freidel, E.R. Livine, “Effective 3d quantum gravity, noncommutative quantum field theory”, hep-th/0512113Google Scholar
  34. 34.
    S. Majid, J. Math. Phys. 46, 103520 (2005) [hep-th/ 0507271]MathSciNetCrossRefADSGoogle Scholar
  35. 35.
    L. Freidel, S. Majid, Noncommutative harmonic analysis, sampling theory, the Duflo map in 2+1 quantum gravity, hep-th/0601004Google Scholar
  36. 36.
    N. Durov, S. Meljanac, A. Samsarov, Z. Škoda, A universal formula for representing Lie algebra generators as formal power series with coefficients in the Weyl algebra, math.RT/0604096Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Rudjer Bošković InstituteZagrebCroatia

Personalised recommendations