Skip to main content
Log in

Astroparticle physics with high energy neutrinos: from AMANDA to IceCube

  • Experimental Physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract

Kilometer-scale neutrino detectors such as IceCube are discovery instruments covering nuclear and particle physics, cosmology and astronomy. Examples of their multidisciplinary missions include the search for the particle nature of dark matter and for additional small dimensions of space. In the end, their conceptual design is very much anchored to the observational fact that Nature produces protons and photons with energies in excess of 1020 eV and 1013 eV, respectively. The puzzle of where and how Nature accelerates the highest energy cosmic particles is unresolved almost a century after their discovery. The cosmic ray connection sets the scale of cosmic neutrino fluxes. In this context, we discuss the first results of the completed AMANDA detector and the science reach of its extension, IceCube. Similar experiments are under construction in the Mediterranean. Neutrino astronomy is also expanding in new directions with efforts to detect air showers, acoustic and radio signals initiated by super-EeV neutrinos. The outline of this review is as follows:

  • Introduction

  • Why kilometer-scale detectors?

  • Cosmic neutrinos associated with the highest energy cosmic rays

  • High energy neutrino telescopes: methodologies of neutrino detection

  • High energy neutrino telescopes: status

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Totsuka, Rept. Prog. Phys. 55, 377 (1992)

    Article  ADS  Google Scholar 

  2. K. Greisen, Ann. Rev. Nucl. Part. Sci. 10, 63 (1960), M.A. Markov, in: Proceedings of the 1960 International Conference on High Energy Physics, ed. by E.C.G. Sudarshan, J.H. Tinlot, A.C. Melissinos, 578 (1960)

    Article  ADS  Google Scholar 

  3. T. K. Gaisser, F. Halzen, T. Stanev, Phys. Rep. 258, 173 (1995) [Erratum 271, 355 (1995)] [hep-ph/9410384]; J.G. Learned K. Mannheim, Ann. Rev. Nucl. Part. Sci. 50, 679 (2000); F. Halzen, D. Hooper, Rept. Prog. Phys. 65, 1025 (2002) [arXiv:astro-ph/0204527]

    Article  ADS  Google Scholar 

  4. IceCube Collaboration, J. Ahrens et al., Astropart. Phys. 20, 507 (2004) [astro-ph/0305196], http://icecube.wisc.edu

    Article  Google Scholar 

  5. A. Achterberg et al., in: Proceedings of the 29th International Cosmic Ray Conference, Pune, India, 2005 [arXiv:astro-ph/0509330]; G. Hill, invited talk at the same conference

  6. M.C. Gonzalez-Garcia, F. Halzen, M. Maltoni, Phys. Rev. D 71, 093010 (2005) [arXiv:hep-ph/0502223]

    Article  ADS  Google Scholar 

  7. www.pha.jhu.edu/∼bagger/talks/HEPAP.pdf

  8. L. Anchordoqui, F. Halzen, arXiv:hep-ph/0510389

  9. G. Bertone, D. Hooper, J. Silk, Phys. Rept. 405, 279 (2005) [arXiv:hep-ph/0404175]

    Article  ADS  Google Scholar 

  10. J.L. Feng, A. Rajaraman, F. Takayama, Int. J. Mod. Phys. D 13, 2355 (2004) [arXiv:hep-th/0405248]

    Article  ADS  Google Scholar 

  11. For a recent review see: S. Pakvasa J.W.F. Valle, Proc. Indian Natl. Sci. Acad. 70A, 189 (2003)

    Google Scholar 

  12. R. Foot, C.N. Leung, O. Yasuda, Phys. Lett. B 443, 185 (1998); M.C. Gonzalez-Garcia et al., Phys. Rev. Lett. 82, 3202 (1999); G.L. Fogli, E. Lisi, A. Marrone G. Scioscia, Phys. Rev. D 60, 053006 (1999); P. Lipari M. Lusignoli, Phys. Rev. D 60, 013003 (1999) [hep-ph/9901350], N. Fornengo, M.C. Gonzalez-Garcia, J.W.F. Valle, JHEP 0007, 006 (2000); G.L. Fogli, E. Lisi, A. Marrone, D. Montanino, Phys. Rev. D 67, 093006 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  13. M.C. Gonzalez-Garcia, M. Maltoni, Phys. Rev. D 70, 033010 (2004)

    Article  ADS  Google Scholar 

  14. DUMAND Collaboration, J. Babson et al., Phys. Rev. D 42, 3613 (1990)

    Article  Google Scholar 

  15. Baikal Collaboration, V.A. Balkanov et al., Nucl. Phys. Proc. Suppl. 118, 363 (2003)

    Article  Google Scholar 

  16. E. Migneco et al., Nucl. Phys. Proc. Suppl. 136, 61 (2004)

    Article  ADS  Google Scholar 

  17. AMANDA collaboration, A. Karle, in: Observation of Atmospheric Neutrino Events with AMANDA, Proceedings of the 26th International Cosmic Ray Conference, Salt Lake City, Utah (1999); AMANDA Collaboration, E. Andres et al., Nature 410, 441 (2001); Phys. Rev. D 66, 012005 (2002) [arXiv:astro-ph/0205109]

    Google Scholar 

  18. T.K. Gaisser, in: Proceedings of the 31st International Conference on High Energy Physics, Amsterdam, The Netherlands, July 2002

  19. D.V. Semikoz, G. Sigl, JCAP 0404, 003 (2004) [arXiv:hep-ph/0309328]

    ADS  Google Scholar 

  20. J.N. Bahcall, E. Waxman, Phys. Rev. D 64, 023002 (2001)

    Article  ADS  Google Scholar 

  21. T.K. Gaisser, OECD Megascience Forum, Taormina, Italy, 1997, arXiv:astro-ph/9707283

  22. M. Ahlers, L.A. Anchordoqui, H. Goldberg, F. Halzen, A. Ringwald, T.J. Weiler, arXiv:astro-ph/0503229

  23. AMANDA Collaboration, J. Ahrens et al., Phys. Rev. Lett. 90, 251101 (2003) [arXiv:astro-ph/0309585]

    Article  Google Scholar 

  24. P. Gondolo, G. Ingelman, M. Thunman, Nucl. Phys. Proc. Suppl. 48, 472 (1996) [arXiv:hep-ph/9602402]

    Article  ADS  Google Scholar 

  25. F.W. Stecker, M.H. Salamon, Astrophys. J. 512, 521 (1992) [arXiv:astro-ph/9808110]; A. Atoyan, C.D. Dermer, Phys. Rev. Lett. 87, 221102 (2001) [arXiv:astro-ph/0108053] and references therein; F.W. Stecker, Phys. Rev. D. 72, 107301 (2005) [arXiv:astro-ph/0510537] for a recent update

    Article  ADS  Google Scholar 

  26. K. Mannheim, R.J. Protheroe, J.P. Rachen, Phys. Rev. D 63, 023003 (2001) [arXiv:astro-ph/9812398]

    Article  MathSciNet  ADS  Google Scholar 

  27. D. Guetta et al., Astropart. Phys. 20, 429 (2004) [arXiv:astro-ph/0302524]

    Article  Google Scholar 

  28. J.P. Rachen, P.L. Biermann, Astron. Astrophys. 272, 161 (1993) [arXiv:astro-ph/9301010]

    ADS  Google Scholar 

  29. E. Waxman, J.N. Bahcall, Phys. Rev. Lett. 78, 2292 (1997) [arXiv:astro-ph/9701231]

    Article  ADS  Google Scholar 

  30. M. Vietri, Phys. Rev. Lett. 80, 3690 (1998) [arXiv:astro-ph/9802241]

    Article  ADS  Google Scholar 

  31. M. Bottcher, C.D. Dermer, M. Bottcher, C.D. Dermer, arXiv:astro-ph/9801027, Astrophys. J. 574, 65 (2002) [arXiv:astro-ph/0005440]

    Article  Google Scholar 

  32. R. Engel, D. Seckel, T. Stanev, Phys. Rev. D 64, 093010 (2001) [astro-ph/0101216] and references therein

    Article  ADS  Google Scholar 

  33. A. Loeb, E. Waxman, arXiv:astro-ph/0601695

  34. V.S. Berezinsky, V.A. Kudryavtsev, Sov. Astron. Lett. 14, 873 (1998)

    Google Scholar 

  35. Talks at Gamma 2004, Heidelberg, Germany, 2004; H.J. Volk, E.G. Berezhko, L.T. Ksenofontov, submitted to Astron. Astrophys. [arXiv:astro-ph/0409453]

  36. J. Alvarez-Muniz, F. Halzen, Astrophys. J. 576, L33 (2002)

  37. HESS collaboration, D. Berge et al., 3rd International Symposium on High-Energy Gamma-ray Astronomy, Heidelberg, Germany

  38. T. Ahmed et al., Phys. Lett. B 324, 241 (1994)

    Article  ADS  Google Scholar 

  39. J. Kwiecinski, A.D. Martin, A.M. Stasto, Acta Phys. Polon. B 31, 1273 (2000) [arXiv:hep-ph/0004109] and references therein

    ADS  Google Scholar 

  40. F. Halzen, D. Saltzberg, Phys. Rev. Lett. 81, 4305 (1998) [arXiv:hep-ph/9804354]

    Article  ADS  Google Scholar 

  41. R.M. Crocker, F. Melia, R.R. Volkas, Astrophys. J. 622, L37 (2005) [arXiv:astro-ph/0411471]

  42. F. Halzen, D. Hooper, JCAP 0401, 002 (2004) [arXiv:astro-ph/0310152]

    ADS  Google Scholar 

  43. J.G. Learned, S. Pakvasa, Astropart. Phys. 3, 267 (1995) [arXiv:hep-ph/9405296]

    Article  ADS  Google Scholar 

  44. M. Ackermann et al., Astropart. Phys. 22, 339 (2005)

    Article  Google Scholar 

  45. M. Ackermann et al., Astropart. Phys. 22, 22127 (2004)

    Google Scholar 

  46. F. Halzen, J. Jacobsen, E. Zas, Phys. Rev. D 53, 7359 (1996)

    Article  ADS  Google Scholar 

  47. SNEWS at http://snews.bnl.gov/

  48. G. Raffelt et al., JCAP 0306, 005 (2003)

    Google Scholar 

  49. ANTARES Collaboration, T. Montaruli et al., in: Proceedings of the 28th International Cosmic Ray Conference, Tsukuba, Japan, 2003

  50. http://www.nestor.org.gr/

  51. For a more extensive review, see: A. Karle, Proceedings of the 2005 TAUP Workshop, Zaragossa, Spain, (2005)

  52. T. Montaruli, private communication

  53. NEMO Collaboration, R. Coniglione et al., http://nemoweb.lns.infn.it/publication.htmgais

  54. N.G. Lehtinen et al., Astropart. Phys., 17, 272 (2002) [arXiv:astro-ph/0104033]

    Google Scholar 

  55. G.M. Frichter et al., Phys. Rev. D 53, 1684 (1996 ) [arXiv:astro-ph/9507078]

  56. P. Gorham, 2002 Aspen Winter Conference on Ultra High Energy Particles from Space, http://astro.uchicago.edu/home/web/olinto/aspen/astroweb

  57. P. Lipari, T. Stanev, Phys. Rev. D 44, 3543 (1991)

    Article  ADS  Google Scholar 

  58. L.A. Anchordoqui, H. Goldberg, M.C. Gonzalez-Garcia, F. Halzen, D. Hooper, S. Sarkar, T.J. Weiler, Phys. Rev. D 72, 065019 (2005) [arXiv:hep-ph/0506168]

    Article  ADS  Google Scholar 

  59. F. Halzen, A.D. Martin, Quarks And Leptons: An Introductory Course In Modern Particle Physics, (J. Wiley and Sons, 1984)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Halzen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halzen, F. Astroparticle physics with high energy neutrinos: from AMANDA to IceCube. Eur. Phys. J. C 46, 669–687 (2006). https://doi.org/10.1140/epjc/s2006-02536-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s2006-02536-4

Keywords

Navigation