Ultra low momentum neutron catalyzed nuclear reactions on metallic hydride surfaces

  • A. WidomEmail author
  • L. Larsen
Theoretical Physics


Ultra low momentum neutron catalyzed nuclear reactions in metallic hydride system surfaces are discussed. Weak interaction catalysis initially occurs when neutrons (along with neutrinos) are produced from the protons that capture “heavy” electrons. Surface electron masses are shifted upwards by localized condensed matter electromagnetic fields. Condensed matter quantum electrodynamic processes may also shift the densities of final states, allowing an appreciable production of extremely low momentum neutrons, which are thereby efficiently absorbed by nearby nuclei. No Coulomb barriers exist for the weak interaction neutron production or other resulting catalytic processes.


Hydride Weak Interaction Nuclear Reaction Catalytic Process Electron Masse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.E. Marshak, Riazuddin, C.P. Ryan, Theory of Weak Interaction of Elementary Particles (Interscience, New York, 1969)Google Scholar
  2. 2.
    H. Yukawa, Proc. Phys. Mater. Soc. Japan 17, 48 (1935)zbMATHGoogle Scholar
  3. 3.
    C. Möller, Physik. Z. Sowjetunion 11, 9 (1937)zbMATHGoogle Scholar
  4. 4.
    J.E. Rothberg, E.W. Anderson, E.J. Bleser, L.M. Lederman, S.L. Meyer, J.L. Rosen, I.-T. Wang, Phys. Rev. 132, 2664 (1963)CrossRefADSGoogle Scholar
  5. 5.
    A.A. Quaranta, A. Bertin, G. Matone, F. Palmonari, G. Torelli, P. Dalpiaz, A. Placci, E. Zavattini, Phys. Rev. 177, 2118 (1969)CrossRefADSGoogle Scholar
  6. 6.
    S. Ando, F. Myhrer, K. Kubodera, Phys. Rev. C 63, 015203 (2000)CrossRefADSGoogle Scholar
  7. 7.
    L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields, Sects. 17 and 47, Prob. 2 (Pergamon Press, Oxford, 1975)Google Scholar
  8. 8.
    V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii, Quantum Electrodynamics, Sect. 40, Eq. (40.15) (Butterworth Heinmann, Oxford, 1997)Google Scholar
  9. 9.
    A. Ringwald, Phys. Lett. B 510, 107 (2001)CrossRefADSGoogle Scholar
  10. 10.
    V.S. Popov, JEPT Lett. 74, 133 (2002)CrossRefADSGoogle Scholar
  11. 11.
    E.A. Stren, R.A. Ferrell, Phys. Rev. 110, 130 (1960)CrossRefADSGoogle Scholar
  12. 12.
    J.D. White, J. Chen, D. Matsiev, D.J. Auerbach, A.M. Wadke, Nature 433, 503 (2005)CrossRefADSGoogle Scholar
  13. 13.
    J. Schwinger, Proc. Natl. Acad. Sci. USA 37, 452 (1951)ADSzbMATHMathSciNetGoogle Scholar
  14. 14.
    R.P. Feynman, Phys. Rev. 80, 440 (1950)CrossRefADSzbMATHMathSciNetGoogle Scholar
  15. 15.
    O. Panella, A. Widom, Y.N. Srivastava, Phys. Rev. B 42, 9790 (1990)CrossRefADSGoogle Scholar
  16. 16.
    G.L. Squires, Introduction to the Theory of Thermal Neutron Scattering (Dover Publications, New York, 1996)Google Scholar
  17. 17.
    B. Hauer, R. Hempelmann, T.J. Udovic, J.J. Rush, W. Koc- kelmann, W. Schäfer, R. Jansen, D. Richter, J. Phys. Condens. Matter 16 5205 (2004)Google Scholar
  18. 18.
    M. Kemali, J.E. Totalici, D.K. Ross, I. Morrison, Phys. Rev. Lett. 84, 1531 (2000)CrossRefADSGoogle Scholar
  19. 19.
    Y. Iwamura, M. Sakano, T. Itoh, Japan J. Appl. Phys. 41, 4642 (2002)CrossRefGoogle Scholar
  20. 20.
    G.H. Miley, G. Narne, T. Woo, J. Radiat. Nucl. Chem. 263, 691 (2005)CrossRefGoogle Scholar
  21. 21.
    G. Preparata, QED Coherence in Matter, Chap. 8 (World Scientific, Singapore, 1995)Google Scholar
  22. 22.
    D.R. Lide (ed.), Handbook of Chemistry and Physics, 81st edn., Sect. 11 (CRC Press, Boca Raton, 2000)Google Scholar
  23. 23.
    R. Firestone, V. Shirley (eds.), Table of Radioactive Isotopes (John Wiley and Sons, New York, 1999)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Physics DepartmentNortheastern UniversityBostonUSA
  2. 2.Lattice Energy LLCChicagoUSA

Personalised recommendations