Skip to main content
Log in

Physics potential and experimental challenges of the LHC luminosity upgrade

  • experimental physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract.

We discuss the physics potential and the experimental challenges of an upgraded LHC running at an instantaneous luminosity of 1035 cm-2s-1. The detector R&D needed to operate ATLAS and CMS in a very high radiation environment and the expected detector performance are discussed. A few examples of the increased physics potential are given, ranging from precise measurements within the Standard Model (in particular in the Higgs sector) to the discovery reach for several New Physics processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS Collaboration, Detector and physics performance Technical Design Report, CERN/LHCC/99-15

  2. CMS Collaboration, Technical Proposal, CERN/LHCC 94-38

  3. A. De Roeck, J.R. Ellis, F. Gianotti, hep-ex/0112004

  4. G. Azuelos et al. , Physics in ATLAS at a possible upgraded LHC, ATLAS Internal Note ATL-PHYS-2001-002

  5. U. Baur et al. , hep-ph/0201227

  6. O. Bruning et al. , LHC luminosity and energy upgrade: A feasibility study, CERN-LHC-PROJECT-REPORT-626

  7. E. Richter-Was, D. Froidevaux, L. Poggioli, ‘ATLFAST 2.0: a fast simulation package for ATLAS’, ATLAS Internal Note ATL-PHYS-98-131 (1998)

  8. D. Abbaneo et al. , ALEPH, DELPHI, L3, OPAL Collaborations, LEP Electroweak Working Group, SLD Heavy Flavor and Electroweak Groups, CERN-EP-2001-098 [hep-ex/0112021]

  9. S. Haywood et al. , hep-ph/0003275, in: Standard model physics (and more) at the LHC, edited by G. Altarelli, M.L. Mangano, Geneva, Switzerland: CERN (2000)

  10. R. Heuer et al. , TESLA Technical Design Report, hep-ph/0106351

  11. L.J. Dixon, Z. Kunszt, A. Signer, Phys. Rev. D 60, 114037 (1999). J. Ohnemus, J.F. Owens, Phys. Rev. D 43, 3626 (1991). B. Mele, P. Nason, G. Ridolfi, Nucl. Phys. B 357, 409 (1991). J. Ohnemus, Phys. Rev. D 44, 3477 (1991). S. Frixione, P. Nason, G. Ridolfi, Nucl. Phys. B 383, 3 (1992). J. Ohnemus, Phys. Rev. D 44, 1403 (1991). S. Frixione, Nucl. Phys. B 410, 280 (1993). J.M. Campbell, R.K. Ellis, Phys. Rev. D 60, 113006 (1999)

    Article  ADS  Google Scholar 

  12. A.S. Belyaev et al. , Phys. Rev. D 59, 015022 (1999)

    Google Scholar 

  13. J. Bagger, S. Dawson, G. Valencia, Nucl. Phys. B 399, 364 (1993)

    Article  ADS  Google Scholar 

  14. J. Bagger, et al. Phys. Rev. D 49, 1246 (1994); idem Phys. Rev. D 52, 3878 (1995)

    Article  ADS  Google Scholar 

  15. A. Dobado, D. Espriu, M.J. Herrero, Z. Phys. C 50, 205 (1991); A. Dobado, M.T. Urdiales, Z. Phys. C 17, 965 (1996); A. Dobado, M.J. Herrero, E. Ruiz, M.T. Urdiales, R. Pelaez, Phys. Lett. B 352, 400 (1995)

    Article  Google Scholar 

  16. P. Hernandez, J. Vegas, Phys. Lett. B 307, 116 (1993); S. Lietti, O.J.P. Éboli, M.C. Gonzalez-Garcia, S.F. Novaes, Phys. Lett. B 339, 119 (1994); A. Brunstein, O.J.P. Éboli, M.C. Gonzalez-Garcia, Phys. Lett. B 375, 233 (1996); S. Alam, S. Dawson, R. Szalapski, Phys. Rev. D 57, 1577 (1998)

    Article  ADS  Google Scholar 

  17. M. Suzuki, Phys. Lett. B 153, 289 (1985); M. Kuroda, F.M. Renard, D. Schildknecht, Phys. Lett. B 183, 366 (1987); H. Neufeld, J.D. Stroughair, D. Schildknecht, Phys. Lett. B 198, 563 (1987); J.A. Grifols, S. Peris, J. Sola, Phys. Lett. B 197, 437 (1987); Int. J. Mod. Phys. A 3, 569 (1988)

    Article  ADS  Google Scholar 

  18. J.J. v. d. Bij, Phys. Rev. D 35, 1088 (1987)

    Article  ADS  Google Scholar 

  19. J.J. v. d. Bij, Phys. Lett. B 296, 239 (1992)

    Article  ADS  Google Scholar 

  20. K. Hagiwara, S. Ishihara, R. Szalapski, D. Zeppenfeld, Phys. Rev. D 48, 2182 (1993)

    Article  ADS  Google Scholar 

  21. J.J. van der Bij, B. Kastening, Phys. Rev. D 57, 2903 (1998)

    Article  ADS  Google Scholar 

  22. D. Zeppenfeld, R. Kinnunen, A. Nikitenko, E. Richter-Was, Phys. Rev. D 62, 013009 (2000); M. Hohlfeld, On the determination of Higgs parameters in the ATLAS experiment at the LHC, ATLAS Internal Note ATL-PHYS-2001-004; M. Dührssen, Prospects for the measurement of Higgs boson coupling parameters in the mass range from 110-190 GeV, ATLAS Internal Note ATL-PHYS-2003-030

    Article  ADS  Google Scholar 

  23. T. Plehn, D. Rainwater, Phys. Lett. B 520, 108 (2001)

    Article  ADS  Google Scholar 

  24. T. Han, B. McElrath, Phys. Lett. B 528, 81 (2002) [arXiv:hep-ph/0201023]

    Article  ADS  Google Scholar 

  25. J. Levêque et al. , Search for the Standard Model Higgs boson in the ttH, \(H\to WW^{(*)}\) channel, ATLAS Internal Note ATL-PHYS-2002-019; F. Maltoni, D. Rainwater, S. Willenbrock, Phys.Rev. D 66, 034022 (2002)

    Article  Google Scholar 

  26. For a recent review and update of production cross-sections, see: A. Djouadi, W. Kilian, M. Muhlleitner, P.M. Zerwas, Eur. Phys. J. C 10, 45 (1999)

    Article  Google Scholar 

  27. E.W. Glover, J.J. van der Bij, Nucl. Phys. B 309, 282 (1988)

    Article  ADS  Google Scholar 

  28. S. Dawson, S. Dittmaier, M. Spira, Phys. Rev. D 58, 115012 (1998)

    Article  ADS  Google Scholar 

  29. B. Kersevan, E. Richter-Was, ATLAS Internal Note ATL-PHYS-2002-030, hep-ph/021302, Comp. Phys Commun. 149, 142 (2003)

    Article  ADS  Google Scholar 

  30. A. Dobrovolskaya, V. Novikov, Z. Phys. C 52, 427 (1991). D.A. Dicus, K.J. Kallianpur, S.S. Willenbrock, Phys. Lett. B 200, 187 (1988). K.J. Kallianpur, Phys. Lett. B 215, 392 (1988). A. Abbasabadi, W.W. Repko, D.A. Dicus, R. Vega, Phys. Lett. B 213, 386 (1988)

    Article  Google Scholar 

  31. V.D. Barger, T. Han, R.J. Phillips, Phys. Rev. D 38, 2766 (1988)

    Article  ADS  Google Scholar 

  32. C.G. Papadopoulos, Comput. Phys. Commun. 137, 247 (2001). A. Kanaki, C.G. Papadopoulos, Comput. Phys. Commun. 132, 306 (2000)

    Article  MATH  ADS  Google Scholar 

  33. A. Blondel, A. Clark, F. Mazzucato, ATL-PHYS-2002-029

  34. U. Baur, T. Plehn, D.L. Rainwater, Phys. Rev. D 67, 033003 (2003)

    Article  ADS  Google Scholar 

  35. U. Baur, T. Plehn, D.L. Rainwater, Phys. Rev. D 69, 053004 (2004) [arXiv:hep-ph/0310056]

    Article  ADS  Google Scholar 

  36. M.L. Mangano, M. Moretti, R. Pittau, Nucl. Phys. B 632, 343 (2002) [arXiv:hep-ph/0108069]. F. Caravaglios, M.L. Mangano, M. Moretti, R. Pittau, Nucl. Phys. B 539, 215 (1999). M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A. Polosa, HEP 0307, 001 (2003) [arXiv:hep-ph/0206293]

    Article  ADS  Google Scholar 

  37. M.S. Chanowitz, M.K. Gaillard, Nucl. Phys. B 261, 379 (1985)

    Article  ADS  Google Scholar 

  38. A. Dobado, M.J. Hererro, J.R. Pelaez, E. Ruiz Morales, Phys. Rev. D 62, 055011 (2000)

    Article  ADS  Google Scholar 

  39. A. Pukhov et al. , COMPHEP - a package for evaluation of Feynman Diagrams and Integration of Multi-particle Phase Space, INP MSU 98-41/542, hep-ph/9908288

  40. J.A. Bagger et al. , Phys. Rev. D 52, 3878 (1995)

    Article  Google Scholar 

  41. M. Beneke et al. , hep-ph/0003033, in: Standard model physics (and more) at the LHC, edited by G. Altarelli, M.L. Mangano eds., Geneva, Switzerland: CERN (2000)

  42. S.I. Bityukov, N.V. Krasnikov, Mod. Phys. Lett. A 13, 3235 (1998); hep-ph/9908402; Nucl. Instrum. Meth. A 452, 518 (2000)

    Article  ADS  Google Scholar 

  43. S.R. Slabospitsky, L. Sonnenschein, Comput. Phys. Commun. 148, 87 (2002) [arXiv:hep-ph/0201292]

    Article  ADS  Google Scholar 

  44. I. Hinchliffe, F.E. Paige, hep-ph/0201141

  45. M. Battaglia et al. , Eur. Phys. J. C 22, 535 (2001) [arXiv:hep-ph/0106204]

    Article  Google Scholar 

  46. N. Arkani-Hamed, S. Dimopoulos, C. Dvali, Phys. Lett. B 429, 263 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  47. L. Randall, R. Sundrum, hep-th/9905521

  48. B.C. Allanach, K. Odagiri, M.A. Parker, B.R. Webber, JHEP 0009, 019 (2000) [arXiv:hep-ph/0006114]

    Article  ADS  Google Scholar 

  49. H. Davoudiasl, J.L. Hewett, T.G. Rizzo, Phys. Rev. D 63, 075004 (2001), hep-ph/0006041, and private communication

    Article  ADS  Google Scholar 

  50. K. Dienes, E. Dudas, T. Gerghetta, Nucl. Phys. B 537, 47 (1999); A. Pomarol, M. Quirós, Phys. Lett. B 438, 255 (1998); M. Masip, A. Pomarol, Phys. Rev. D 60, 096005 (1999); I. Antoniadis, K. Benakli, M. Quirós Phys. Lett. B 460, 176 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  51. T.G. Rizzo, Phys. Rev. D 61, 055005 (2000)

    Article  ADS  Google Scholar 

  52. We warmly thank Tom Rizzo for providing us with the FORTRAN code for \(Z/\gamma\) excitation production and for the help in implementing it

  53. Inner Detector TDR, ATLAS TDR4-5, CERN/LHCC 97-16 and 97-17

  54. Tracker TDR, CMS TDR5, CERN/LHCC 98-6 and Add 1 CERN/LHCC 2000-016

  55. RD48 Status Report, CERN/LHCC 2000-009

  56. S. Watts, Proc. of VERTEX 2001 conference

  57. S. Parker, C. Kenney, to be published in IEEE TNS

  58. Z. Li, Proc. of 2001 Vienna Conference on Instrumentation

  59. RD42 Status Report, CERN/LHCC 2002-010

  60. K. Borer et al. Nucl.Instr. Meth., A 440, 5 (2000), RD39 Collaboration

    Google Scholar 

  61. RD39 Collaboration, in preparation

  62. Liquid Argon Calorimeter TDR, ATLAS TDR 2, CERN/LHCC 96-41

  63. Tile Calorimeter TDR, ATLAS TDR 3, CERN/LHCC 96-42

  64. The Electromagnetic Calorimeter TDR, CMS TDR 4, CERN/LHCC 97-33

  65. The Hadron Calorimeter TDR, CMS TDR 2, CERN/LHCC 97-31

  66. N. Akchurin CMS Note 2000-007

  67. Muon Spectrometer TDR, ATLAS TDR 10, CERN/LHCC 97-22

  68. Muon TDR, CMS TDR 3, CERN/LHCC 97-32

  69. A. Rivetti et al. , 5-th Workshop for LHC Experiments, CERN 99- 09, 157 (1999)

    Google Scholar 

  70. M. Campbell et al. , Nucl.Instr. Meth. A 473, 140 (2001)

    Article  Google Scholar 

  71. P. Jarron et al. , Nucl. Phys. B Proc. Suppl 78, 625 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Received: 25 November 2003, Revised: 21 October 2004, Published online: 18 January 2005

Conveners: F. Gianotti, M.L. Mangano, T. Virdee

Contributors: S. Abdullin, G. Azuelos, A. Ball, D. Barberis, A. Belyaev, P. Bloch, M. Bosman, L. Casagrande, D. Cavalli, P. Chumney, S. Cittolin, S.Dasu, A. De Roeck, N. Ellis, P. Farthouat, D. Fournier, J.-B. Hansen, I. Hinchliffe, M. Hohlfeld, M. Huhtinen, K. Jakobs, C. Joram, F. Mazzucato, G.Mikenberg, A. Miagkov, M. Moretti, S. Moretti, T. Niinikoski, A. Nikitenko, A. Nisati, F. Paige, S. Palestini, C.G. Papadopoulos, F. Piccinini, R. Pittau, G. Polesello, E. Richter-Was, P. Sharp, S.R. Slabospitsky, W.H. Smith, S. Stapnes, G. Tonelli, E. Tsesmelis, Z. Usubov, L. Vacavant, J. van der Bij, A. Watson, M. Wielers

A. Nikitenko: On leave of absence from ITEP, Moscow, Russia.

F. Piccinini: On leave of absence from INFN, Sezione di Pavia, Italy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gianotti, F., Mangano, M.L., Virdee, T. et al. Physics potential and experimental challenges of the LHC luminosity upgrade. Eur. Phys. J. C 39, 293–333 (2005). https://doi.org/10.1140/epjc/s2004-02061-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s2004-02061-6

Keywords

Navigation