Skip to main content
Log in

The role of spurions in Higgs-less electroweak effective theories

  • theoretical physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract.

Inspired by recent developments of moose models, we reconsider low-energy effective theories of Goldstone bosons, gauge fields and chiral fermions applied to low-energy QCD and to Higgs-less electroweak symmetry breaking. Couplings and the corresponding reduction of symmetry are introduced via constraints enforced by a set of non-propagating covariantly constant spurion fields. Relics of the latter are used as small expansion parameters conjointly with the usual low-energy expansion. Certain couplings can only appear at higher orders of the spurion expansion and, consequently, they become naturally suppressed independently of the idea of dimensional deconstruction. At leading order this leads to a set of generalized Weinberg sum rules and to the suppression of non-standard couplings to fermions in Higgs-less EWSB models with the minimal particle content. Within the latter, higher spurion terms allow for a fermion mass matrix with the standard CKM structure and C P violation. In addition, Majorana masses for neutrinos are possible. Examples of non-minimal models are briefly mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Weinberg, Physica A 96, 327 (1979)

    Article  ADS  Google Scholar 

  2. G. ‘t Hooft, in Recent developments in gauge theories, edited by G. ‘t Hooft et al. (Plenum Press 1980)

  3. J. Gasser, H. Leutwyler, Ann. Phys. 158, 142 (1984)

    Article  ADS  Google Scholar 

  4. J. Gasser, H. Leutwyler, Nucl. Phys. B 250, 465 (1985)

    Article  ADS  Google Scholar 

  5. A. Dobado, D. Espriu, M.J. Herrero, Phys. Lett. B 255, 405 (1991)

    Article  ADS  Google Scholar 

  6. D. Espriu, M.J. Herrero, Nucl. Phys. B 373, 117 (1992)

    Article  ADS  Google Scholar 

  7. The LEP Electroweak Working Group and the SLD Heavy Flavour Working Group (2002) hep-ex/0212036

  8. M.E. Peskin, T. Takeuchi, Phys. Rev. D 46, 381 (1992)

    Article  ADS  Google Scholar 

  9. T. Appelquist, C.W. Bernard, Phys. Rev. D 22, 200 (1980)

    Article  ADS  Google Scholar 

  10. A.C. Longhitano, Phys. Rev. D 22, 1166 (1980)

    Article  ADS  Google Scholar 

  11. A.C. Longhitano, Nucl. Phys. B 188, 118 (1981)

    Article  ADS  Google Scholar 

  12. A. Nyffeler, A. Schenk, Phys. Rev. D 53, 1494 (1996), hep-ph/9507287

    Article  ADS  Google Scholar 

  13. U.-G. Meißner, Phys. Rept. 161, 213 (1988)

    Article  ADS  Google Scholar 

  14. G. Ecker, J. Gasser, H. Leutwyler, A. Pich, E. de Rafael, Phys. Lett. B 223, 425 (1989)

    Article  ADS  Google Scholar 

  15. S. Weinberg, Phys. Rev. Lett. 18, 507 (1967)

    Article  ADS  Google Scholar 

  16. D.T. Son, M.A. Stephanov (2003), hep-ph/0304182

  17. H. Georgi, in Architecture of fundamental interactions at short distances, edited by P. Ramond, R. Stora (North-Holland Publishing 1987), Pt. 1

  18. N. Arkani-Hamed, A.G. Cohen, H. Georgi, Phys. Rev. Lett. 86, 4757 (2001), hep-th/0104005

    Article  ADS  MathSciNet  Google Scholar 

  19. H.-C. Cheng, C.T. Hill, S. Pokorski, J. Wang, Phys. Rev. D 64, 065007 (2001), hep-th/0104179

    Article  ADS  Google Scholar 

  20. G. Ecker, J. Gasser, A. Pich, E. de Rafael, Nucl. Phys. B 321, 311 (1989)

    Article  ADS  Google Scholar 

  21. R. Urech, Nucl. Phys. B 433, 234 (1995), hep-ph/9405341

    Article  ADS  Google Scholar 

  22. B. Moussallam, Nucl. Phys. B 504, 381 (1997), hep-ph/9701400

    Article  ADS  Google Scholar 

  23. N. Arkani-Hamed, A.G. Cohen, H. Georgi, Phys. Lett. B 513, 232 (2001), hep-ph/0105239

    Article  ADS  Google Scholar 

  24. H. Leutwyler, Ann. Phys. 235, 165 (1994), hep-ph/9311274

    Article  ADS  MathSciNet  Google Scholar 

  25. J. Wess, B. Zumino, Phys. Lett. B 37, 95 (1971)

    Article  ADS  Google Scholar 

  26. D.J. Gross, R. Jackiw, Phys. Rev. D 6, 477 (1972)

    Article  ADS  Google Scholar 

  27. C. Grosse-Knetter, R. Kögerler, Phys. Rev. D 48, 2865 (1993), hep-ph/9212268

    Article  ADS  MathSciNet  Google Scholar 

  28. A. Manohar, H. Georgi, Nucl. Phys. B 234, 189 (1984)

    Article  ADS  Google Scholar 

  29. H. Georgi, Weak interactions and modern particle theory (Benjamin/Cummings Publishing 1984)

  30. H. Georgi, Phys. Lett. B 298, 187 (1993), hep-ph/9207278

    Article  ADS  Google Scholar 

  31. S. Chang, H.-J. He (2003), hep-ph/0311177

  32. R. Sekhar Chivukula, D.A. Dicus, H.-J. He, Phys. Lett. B 525, 175 (2002), hep-ph/0111016

    Article  ADS  MathSciNet  Google Scholar 

  33. C. Csáki, C. Grojean, H. Murayama, L. Pilo, J. Terning, hep-ph/0305237

  34. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 385 (1979)

    Article  ADS  Google Scholar 

  35. T. Das, G.S. Guralnik, V.S. Mathur, F.E. Low, J.E. Young, Phys. Rev. Lett. 18, 759 (1967)

    Article  ADS  Google Scholar 

  36. J.J. Sakurai, Currents and mesons (University of Chicago Press 1969)

  37. N.S. Craigie, J. Stern, Fortschr. Phys. 34, 261 (1986)

    Google Scholar 

  38. M. Knecht, E. de Rafael, Phys. Lett. B 424, 335 (1998), hep-ph/9712457

    Article  ADS  Google Scholar 

  39. E. Witten, Phys. Rev. Lett. 51, 2351 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  40. G. ‘t Hooft, Nucl. Phys. B 72, 461 (1974)

    Article  ADS  Google Scholar 

  41. G.C. Rossi, G. Veneziano, Nucl. Phys. B 123, 507 (1977)

    Article  ADS  Google Scholar 

  42. E. Witten, Nucl. Phys. B 160, 57 (1979)

    Article  ADS  Google Scholar 

  43. L. Susskind, Phys. Rev. D 20, 2619 (1979)

    Article  ADS  Google Scholar 

  44. R. Sekhar Chivukula, H.-J. He, J. Howard, E.H. Simmons, hep-ph/0307209

  45. S. Dimopoulos, L. Susskind, Nucl. Phys. B 155, 237 (1979)

    Article  ADS  Google Scholar 

  46. T. Appelquist, M.J. Bowick, E. Cohler, A.I. Hauser, Phys. Rev. D 31, 1676 (1985)

    Article  ADS  Google Scholar 

  47. R.D. Peccei, X. Zhang, Nucl. Phys. B 337, 269 (1990)

    Article  ADS  Google Scholar 

  48. R. Casalbuoni, S. De Curtis, D. Dominici, R. Gatto, Nucl. Phys. B 282, 235 (1987)

    Article  ADS  Google Scholar 

  49. R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio, R. Gatto, Int. J. Mod. Phys. A 4, 1065 (1989)

    Article  ADS  Google Scholar 

  50. M. Knecht, R. Urech, Nucl. Phys. B 519, 329 (1998), hep-ph/9709348

    Article  ADS  Google Scholar 

  51. E. Bagan, D. Espriu, J. Manzano, Phys. Rev. D 60, 114035 (1999), hep-ph/9809237

    Article  ADS  Google Scholar 

  52. J. Wudka, Int. J. Mod. Phys. A 9, 2301 (1994), hep-ph/9406205

    Article  ADS  Google Scholar 

  53. A. Nyffeler, A. Schenk, Phys. Rev. D 62, 113006 (2000), hep-ph/9907294

    Article  ADS  Google Scholar 

  54. P. Sikivie, L. Susskind, M.B. Voloshin, V.I. Zakharov, Nucl. Phys. B 173, 189 (1980)

    Article  ADS  Google Scholar 

  55. R. Casalbuoni et al. , Phys. Lett. B 349, 533 (1995), hep-ph/9502247

    Article  ADS  Google Scholar 

  56. M. Bando, T. Kugo, K. Yamawaki, Phys. Rept. 164, 217 (1988)

    Article  ADS  Google Scholar 

  57. G. Altarelli, R. Barbieri, Phys. Lett. B 253, 161 (1991)

    Article  ADS  Google Scholar 

  58. G. Sánchez-Colón, J. Wudka, Phys. Lett. B 432, 383 (1998), hep-ph/9805366

    Article  ADS  Google Scholar 

  59. C. Csáki, C. Grojean, L. Pilo, J. Terning, hep-ph/0308038

  60. Y. Nomura, JHEP 11, 050 (2003), hep-ph/0309189

    Article  ADS  Google Scholar 

  61. N. Arkani-Hamed et al. , JHEP 0208, 021 (2002), hep-ph/0206020

    Article  ADS  MathSciNet  Google Scholar 

  62. M. Knecht, S. Peris, E. de Rafael, Phys. Lett. B 443, 255 (1998), hep-ph/9809594

    Article  ADS  Google Scholar 

  63. K. Lane, Phys. Rev. D 65, 115001 (2002), hep-ph/0202093

    Article  ADS  Google Scholar 

  64. N. Arkani-Hamed, A.G. Cohen, E. Katz, A.E. Nelson, JHEP 0207, 034 (2002), hep-ph/0206021

    Article  ADS  Google Scholar 

  65. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999), hep-ph/9905221

    Article  ADS  MathSciNet  Google Scholar 

  66. R. Contino, Y. Nomura, A. Pomarol, hep-ph/0306259

  67. H. Davoudiasl, J.L. Hewett, B. Lillie, T.G. Rizzo, hep-ph/0312193

  68. R. Barbieri, A. Pomarol, R. Rattazzi, hep-ph/0310285

  69. M.E. Peskin, Nucl. Phys. B 175, 197 (1980)

    Article  ADS  Google Scholar 

  70. R.F. Dashen, Phys. Rev. D 3, 1879 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  71. R. Casalbuoni et al. , Phys. Rev. D 53, 5201 (1996), hep-ph/9510431

    Article  ADS  Google Scholar 

  72. H. Georgi, S. Weinberg, Phys. Rev. D 17, 275 (1978)

    Article  ADS  Google Scholar 

  73. S. Chang, J.G. Wacker, hep-ph/0303001

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hirn.

Additional information

Received: 8 January 2004, Revised: 7 February 2004, Published online: 2 April 2004

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirn, J., Stern, J. The role of spurions in Higgs-less electroweak effective theories. Eur. Phys. J. C 34, 447–475 (2004). https://doi.org/10.1140/epjc/s2004-01731-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s2004-01731-7

Keywords

Navigation