L. Verde, T. Treu, A.G. Riess, Tensions between the Early and the Late Universe. Nat. Astron. 3(7), 891 (2019). arXiv:1907.10625
K.C. Wong, et al., H0LiCOW – XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3\(\sigma \) tension between early- and late-Universe probes. Mon. Not. R. Astron. Soc. 498, 1420–1439 (2020). arXiv:1907.04869
Planck Collaboration, N. Aghanim, et al., Planck 2018 results. VI. Cosmological parameters (2018). arXiv:1807.06209
A.G. Riess, S. Casertano, W. Yuan, L.M. Macri, D. Scolnic, Large Magellanic cloud cepheid standards provide a 1% foundation for the determination of the hubble constant and stronger evidence for physics beyond \(\Lambda \)CDM. Astrophys. J. 876, 85 (2019). arXiv:1903.07603
E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Melchiorri, et al, In the Realm of the hubble tension – a review of solutions (2021). arXiv:2103.01183
M. Escudero, S.J. Witte, A CMB search for the neutrino mass mechanism and its relation to the Hubble tension. Eur. Phys. J. C 80, 294 (2020). arXiv:1909.04044
M. Escudero, S. J. Witte, The Hubble tension as a hint of leptogenesis and neutrino mass generation (2021). arXiv:2103.03249
S. Weinberg, Baryon and Lepton nonconserving processes. Phys. Rev. Lett. 43, 1566–1570 (1979)
ADS
Article
Google Scholar
R.N. Mohapatra, Mechanism for understanding small neutrino mass in superstring theories. Phys. Rev. Lett. 56, 561–563 (1986)
ADS
Article
Google Scholar
R.N. Mohapatra, J.W.F. Valle, Neutrino mass and Baryon number nonconservation in superstring models. Phys. Rev. D 34, 1642 (1986)
ADS
Article
Google Scholar
J. Bernabeu, A. Santamaria, J. Vidal, A. Mendez, J.W.F. Valle, Lepton flavor nonconservation at high-energies in a superstring inspired standard model. Phys. Lett. B 187, 303–308 (1987)
ADS
Article
Google Scholar
F. Bazzocchi, Minimal dynamical inverse See Saw. Phys. Rev. D 83, 093009 (2011). arXiv:1011.6299
ADS
Article
Google Scholar
A.G. Dias, C.A.S. Pires, P.S.R. da Silva, How the Inverse See-Saw mechanism can reveal itself natural, canonical and independent of the right-handed neutrino mass. Phys. Rev. D 84, 053011 (2011). arXiv:1107.0739
ADS
Article
Google Scholar
V. De Romeri, E. Fernandez-Martinez, J. Gehrlein, P.A.N. Machado, V. Niro, Dark Matter and the elusive \(Z^\prime \) in a dynamical Inverse Seesaw scenario. JHEP 10, 169 (2017). arXiv:1707.08606
E. Bertuzzo, S. Jana, P.A.N. Machado, R. Zukanovich Funchal, Neutrino masses and mixings dynamically generated by a light dark sector. Phys. Lett. B 791, 210–214 (2019). arXiv:1808.02500
P. Ballett, M. Hostert, S. Pascoli, Neutrino masses from a dark neutrino sector below the electroweak scale. Phys. Rev. D 99, 091701 (2019). arXiv:1903.07590
P. Ballett, M. Hostert, S. Pascoli, Dark neutrinos and a three portal connection to the standard model. Phys. Rev. D 101, 1115025 (2020). arXiv:1903.07589
J. Gehrlein, M. Pierre, A testable hidden-sector model for Dark Matter and neutrino masses. JHEP 02, 068 (2020). arXiv:1912.06661
S. Mandal, R. Srivastava, J.W.F. Valle, Electroweak symmetry breaking in the inverse seesaw mechanism. JHEP 03, 212 (2021). arXiv:2009.10116
S. Mandal, J.C. Rom ao, R. Srivastava, J.W.F. Valle, Dynamical inverse seesaw mechanism as a simple benchmark for electroweak breaking and Higgs boson studies (2021). arXiv:2103.02670
X. Zhang, S. Zhou, Inverse Seesaw model with a modular \(S^{}_4\) Symmetry: Lepton flavor mixing and warm dark matter (2021). arXiv:2106.03433
A. Das, S. Goswami, V. K. N., T. K. Poddar, Freeze-in sterile neutrino dark matter in a class of U\((1)^\prime \) models with inverse seesaw (2021). arXiv:2104.13986
A. Abada, G. Arcadi, M. Lucente, Dark Matter in the minimal Inverse Seesaw mechanism. JCAP 10, 001 (2014). arXiv:1406.6556
ADS
Google Scholar
A. Abada, M. Lucente, Looking for the minimal inverse seesaw realisation. Nucl. Phys. B 885, 651–678 (2014). arXiv:1401.1507
ADS
Article
Google Scholar
S. Boulebnane, J. Heeck, A. Nguyen, D. Teresi, Cold light dark matter in extended seesaw models. JCAP 04, 006 (2018). arXiv:1709.07283
S. Dodelson, L.M. Widrow, Sterile-neutrinos as dark matter. Phys. Rev. Lett. 72, 17–20 (1994). arXiv:hep-ph/9303287
ADS
Article
Google Scholar
X.-D. Shi, G.M. Fuller, A New dark matter candidate: Nonthermal sterile neutrinos. Phys. Rev. Lett. 82, 2832–2835 (1999). arXiv:astro-ph/9810076
ADS
Article
Google Scholar
J. Ghiglieri, M. Laine, Sterile neutrino dark matter via GeV-scale leptogenesis? JHEP 07, 078 (2019). arXiv:1905.08814
J. Ghiglieri, M. Laine, Sterile neutrino dark matter via coinciding resonances. JCAP 07, 012 (2020). arXiv:2004.10766
B.M. Roach, K.C.Y. Ng, K. Perez, J.F. Beacom, S. Horiuchi, R. Krivonos et al., NuSTAR Tests of Sterile-Neutrino Dark Matter: new galactic bulge observations and combined impact. Phys. Rev. D 101, 103011 (2020). arXiv:1908.09037
K. Petraki, A. Kusenko, Dark-matter sterile neutrinos in models with a gauge singlet in the Higgs sector. Phys. Rev. D 77, 065014 (2008). arXiv:0711.4646
ADS
Article
Google Scholar
A. Merle, V. Niro, D. Schmidt, New production mechanism for keV sterile neutrino dark matter by decays of frozen-in scalars. JCAP 03, 028 (2014). arXiv:1306.3996
ADS
MathSciNet
Article
Google Scholar
M. Drewes, J.U. Kang, Sterile neutrino dark matter production from scalar decay in a thermal bath. JHEP 05, 051 (2016). arXiv:1510.05646
M. Drewes et al., A white paper on keV sterile neutrino dark Matter. JCAP 01, 025 (2017). arXiv:1602.04816
V. De Romeri, D. Karamitros, O. Lebedev, T. Toma, Neutrino dark matter and the Higgs portal: improved freeze-in analysis. JHEP 10, 137 (2020). arXiv:2003.12606
J. Alcaniz, N. Bernal, A. Masiero, F.S. Queiroz, Light dark matter: A common solution to the lithium and H 0 problems. Phys. Lett. B 812, 136008 (2021). arXiv:1912.05563
P. Minkowski, \(\mu \rightarrow e\gamma \) at a Rate of One Out of \(10^{9}\) Muon Decays? Phys. Lett. 67B, 421–428 (1977)
ADS
Article
Google Scholar
R.N. Mohapatra, G. Senjanovic, Neutrino mass and spontaneous parity nonconservation. Phys. Rev. Lett. 44, 912 (1980)
ADS
Article
Google Scholar
T. Yanagida, Horizontal gauge symmetry and masses of neutrinos. Conf. Proc. C 7902131, 95–99 (1979)
Google Scholar
M. Gell-Mann, P. Ramond, R. Slansky, Complex spinors and unified theories. Conf. Proc. C 790927, 315–321 (1979). arXiv:1306.4669
Google Scholar
F. Vissani, Do experiments suggest a hierarchy problem? Phys. Rev. D 57, 7027–7030 (1998). arXiv:hep-ph/9709409
ADS
Article
Google Scholar
J. Casas, J. Espinosa, I. Hidalgo, Implications for new physics from fine-tuning arguments. 1. Application to SUSY and seesaw cases. JHEP 11, 057 (2004). arXiv:hep-ph/0410298
G.C. Branco, W. Grimus, L. Lavoura, THE See-Saw mechanism in the presence of a conserved Lepton number. Nucl. Phys. B 312, 492 (1989)
ADS
Article
Google Scholar
J. Kersten, A.Y. Smirnov, Right-handed neutrinos at CERN LHC and the Mechanism of Neutrino Mass Generation. Phys. Rev. D 76, 073005 (2007). arXiv:0705.3221
ADS
Article
Google Scholar
A. Abada, C. Biggio, F. Bonnet, M.B. Gavela, T. Hambye, Low energy effects of neutrino masses. JHEP 12, 061 (2007). arXiv:0707.4058
ADS
Article
Google Scholar
K. Moffat, S. Pascoli, C. Weiland, Equivalence between massless neutrinos and lepton number conservation in fermionic singlet extensions of the Standard Model (2017). arXiv:1712.07611
M. Magg, C. Wetterich, Neutrino mass problem and gauge hierarchy. Phys. Lett. B 94, 61–64 (1980)
ADS
Article
Google Scholar
J. Schechter, J.W.F. Valle, Neutrino masses in SU(2) x U(1) theories. Phys. Rev. D 22, 2227 (1980)
ADS
Article
Google Scholar
G. Lazarides, Q. Shafi, C. Wetterich, Proton lifetime and Fermion masses in an SO(10) model. Nucl. Phys. B 181, 287–300 (1981)
ADS
Article
Google Scholar
R.N. Mohapatra, G. Senjanovic, Neutrino masses and mixings in gauge models with spontaneous parity violation. Phys. Rev. D 23, 165 (1981)
ADS
Article
Google Scholar
E.K. Akhmedov, Z.G. Berezhiani, R.N. Mohapatra, G. Senjanovic, Planck scale effects on the Majoron. Phys. Lett. B 299, 90–93 (1993). arXiv:hep-ph/9209285
ADS
Article
Google Scholar
L. Lello, D. Boyanovsky, R.D. Pisarski, Production of heavy sterile neutrinos from vector boson decay at electroweak temperatures. Phys. Rev. D 95, 043524 (2017). arXiv:1609.07647
A. Abada, G. Arcadi, V. Domcke, M. Drewes, J. Klaric, M. Lucente, Low-scale leptogenesis with three heavy neutrinos. JHEP 01, 164 (2019). arXiv:1810.12463
L.J. Hall, K. Jedamzik, J. March-Russell, S.M. West, Freeze-In production of FIMP dark matter. JHEP 03, 080 (2010). arXiv:0911.1120
ADS
Article
Google Scholar
J. W. Foster, M. Kongsore, C. Dessert, Y. Park, N. L. Rodd, K. Cranmer et al., A deep search for decaying dark matter with XMM-Newton blank-sky observations (2021). arXiv:2102.02207
A. Boyarsky, D. Malyshev, A. Neronov, O. Ruchayskiy, Constraining DM properties with SPI. Mon. Not. R. Astron. Soc. 387, 1345 (2008). arXiv:0710.4922
ADS
Article
Google Scholar
G. Ballesteros, M.A. Garcia, M. Pierre, How warm are non-thermal relics? Lyman-\(\alpha \) bounds on out-of-equilibrium dark matter (2020). arXiv:2011.13458
E. Fernandez-Martinez, J. Hernandez-Garcia, J. Lopez-Pavon, Global constraints on heavy neutrino mixing. JHEP 08, 033 (2016). arXiv:1605.08774
V.K. Narayanan, D.N. Spergel, R. Dave, C.-P. Ma, Constraints on the mass of warm dark matter particles and the shape of the linear power spectrum from the Ly\(\alpha \) forest. Astrophys. J. Lett. 543, L103–L106 (2000). arXiv:astro-ph/0005095
ADS
Article
Google Scholar
M. Viel, J. Lesgourgues, M.G. Haehnelt, S. Matarrese, A. Riotto, Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-alpha forest. Phys. Rev. D 71, 063534 (2005). arXiv:astro-ph/0501562
ADS
Article
Google Scholar
M. Viel, G.D. Becker, J.S. Bolton, M.G. Haehnelt, Warm dark matter as a solution to the small scale crisis: new constraints from high redshift Lyman-\(\alpha \) forest data. Phys. Rev. D 88, 043502 (2013). arXiv:1306.2314
ADS
Article
Google Scholar
J. Baur, N. Palanque-Delabrouille, C. Yèche, C. Magneville, M. Viel, Lyman-alpha Forests cool Warm Dark Matter. JCAP 08, 012 (2016). arXiv:1512.01981
V. Iršič et al., New Constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman-\(\alpha \) forest data. Phys. Rev. D 96, 023522 (2017). arXiv:1702.01764
N. Palanque-Delabrouille, C. Yèche, N. Schöneberg, J. Lesgourgues, M. Walther, S. Chabanier et al., Hints, neutrino bounds and WDM constraints from SDSS DR14 Lyman-\(\alpha \) and Planck full-survey data. JCAP 04, 038 (2020). arXiv:1911.09073
A. Garzilli, O. Ruchayskiy, A. Magalich, A. Boyarsky, How warm is too warm? Towards robust Lyman-\(\alpha \) forest bounds on warm dark matter (2019). arXiv:1912.09397
K.J. Bae, A. Kamada, S.P. Liew, K. Yanagi, Light axinos from freeze-in: production processes, phase space distributions, and Ly-\(\alpha \) forest constraints. JCAP 01, 054 (2018). arXiv:1707.06418
A. Kamada, K. Yanagi, Constraining FIMP from the structure formation of the Universe: analytic mapping from \(m {WDM}\). JCAP 11, 029 (2019). arXiv:1907.04558
J. Heeck, D. Teresi, Cold keV dark matter from decays and scatterings. Phys. Rev. D 96, 035018 (2017). arXiv:1706.09909
F. D’Eramo, A. Lenoci, Lower mass bounds on FIMPs (2020). arXiv:2012.01446
ATLAS Collaboration, Combination of searches for invisible Higgs boson decays with the ATLAS experiment (2020)
S. Weinberg, Goldstone Bosons as fractional cosmic neutrinos. Phys. Rev. Lett. 110, 241301 (2013). arXiv:1305.1971
ADS
Article
Google Scholar
CMS Collaboration, A.M. Sirunyan, et al., Search for invisible decays of a Higgs boson produced through vector boson fusion in proton–proton collisions at \(\sqrt{s} =\) 13 TeV, Phys. Lett. B 793, 520–551 (2019). arXiv:1809.05937
E.K. Akhmedov, V.A. Rubakov, A.Y. Smirnov, Baryogenesis via neutrino oscillations. Phys. Rev. Lett. 81, 1359–1362 (1998). arXiv:hep-ph/9803255
ADS
Article
Google Scholar
T. Asaka, M. Shaposhnikov, The nuMSM, dark matter and baryon asymmetry of the universe. Phys. Lett. B 620, 17–26 (2005). arXiv:hep-ph/0505013
ADS
Article
Google Scholar
M. Shaposhnikov, The nuMSM, leptonic asymmetries, and properties of singlet fermions. JHEP 08, 008 (2008). arXiv:0804.4542
ADS
MathSciNet
Article
Google Scholar
L. Canetti, M. Shaposhnikov, Baryon asymmetry of the universe in the NuMSM. JCAP 09, 001 (2010). arXiv:1006.0133
ADS
Google Scholar
A. Abada, G. Arcadi, V. Domcke, M. Lucente, Lepton number violation as a key to low-scale leptogenesis. JCAP 11, 041 (2015). arXiv:1507.06215
P. Hernández, M. Kekic, J. López-Pavón, J. Racker, N. Rius, Leptogenesis in GeV scale seesaw models. JHEP 10, 067 (2015). arXiv:1508.03676
P. Hernández, M. Kekic, J. López-Pavón, J. Racker, J. Salvado, Testable Baryogenesis in Seesaw models. JHEP 08, 157 (2016). arXiv:1606.06719
Google Scholar
M. Drewes, B. Garbrecht, P. Hernandez, M. Kekic, J. Lopez-Pavon, J. Racker et al., ARS Leptogenesis. Int. J. Mod. Phys. A 33, 1842002 (2018). arXiv:1711.02862
A. Abada, G. Arcadi, V. Domcke, M. Lucente, Neutrino masses, leptogenesis and dark matter from small lepton number violation? JCAP 12, 024 (2017). arXiv:1709.00415
E. Chun et al., Probing Leptogenesis. Int. J. Mod. Phys. A 33, 1842005 (2018). arXiv:1711.02865
A. Caputo, P. Hernandez, N. Rius, Leptogenesis from oscillations and dark matter. Eur. Phys. J. C 79, 574 (2019). arXiv:1807.03309