1 Introduction

The Deep Underground Neutrino Experiment (DUNE) is a next-generation, long-baseline neutrino oscillation experiment which will carry out a detailed study of neutrino mixing utilizing high-intensity \(\nu _\mu \) and \({\bar{\nu }}_\mu \) beams measured over a long baseline. \(\hbox {DUNE}\) is designed to make significant contributions to the completion of the standard three-flavor picture by measuring all the parameters governing \(\nu _1\)\(\nu _3\) and \(\nu _2\)\(\nu _3\) mixing in a single experiment. Its main scientific goals are the definitive determination of the neutrino mass ordering, the definitive observation of \(\hbox {charge-parity symmetry violation (CPV)}\) for more than 50% of possible true values of the charge-parity violating phase, \(\delta _{\mathrm{CP}}\), and precise measurement of oscillation parameters, particularly \(\delta _{\mathrm{CP}}\), \(\sin ^22\theta _{13}\), and the octant of \(\theta _{23}\). These measurements will help guide theory in understanding if there are new symmetries in the neutrino sector and whether there is a relationship between the generational structure of quarks and leptons [1]. Observation of \(\hbox {CPV}\) in neutrinos would be an important step in understanding the origin of the baryon asymmetry of the universe [2, 3].

The \(\hbox {DUNE}\) experiment will observe neutrinos from a high-power neutrino beam peaked at \(\sim \)2.5 GeV but with a broad range of neutrino energies, a \(\hbox {near detector (ND)}\) located at Fermi National Accelerator Laboratory, in Batavia, Illinois, USA, and a large \(\hbox {liquid argon time-projection}\) \(\hbox {chamber (LArTPC) far detector (FD)}\) located at the 4850 ft level of Sanford Underground Research Facility (SURF), in Lead, South Dakota, USA, 1285 km from the neutrino production point. The neutrino beam provided by \(\hbox {Long-Baseline Neutrino Facility (LBNF)}\) [4] is produced using protons from Fermilab’s Main Injector, which are guided onto a graphite target, and a traditional horn-focusing system to select and focus particles produced in the target [5]. The polarity of the focusing magnets can be reversed to produce a beam dominated by either muon neutrinos or muon antineutrinos. A highly capable \(\hbox {ND}\) will constrain many systematic uncertainties for the oscillation analysis. The 40-kt (fiducial) \(\hbox {FD}\) is composed of four 10 kt (fiducial) LArTPC modules [6,7,8]. The deep underground location of the \(\hbox {FD}\) reduces cosmogenic and atmospheric sources of background, which also provides sensitivity to nucleon decay and low-energy neutrino detection, for example, the possible observation of neutrinos from a core-collapse supernova [5].

The entire complement of neutrino oscillation experiments to date has measured five of the neutrino mixing parameters [9,10,11]: the three mixing angles \(\theta _{12}\), \(\theta _{23}\), and \(\theta _{13}\), and the two squared-mass differences \(\varDelta m^{2}_{21}\) and \(|\varDelta m^{2}_{31}|\), where \(\varDelta m^2_{ij} = m^2_{i} - m^{2}_{j}\) is the difference between the squares of the neutrino mass states in eV\(^{2}\). The neutrino mass ordering (i.e., the sign of \(\varDelta m^{2}_{31}\)) is unknown, though recent results show a weak preference for the normal ordering [12,13,